Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta bắt đầu bằng việc giả sử một giá trị ban đầu cho x, y và z, sau đó lặp lại quá trình tính toán cho đến khi đạt được độ chính xác mong muốn.
Ví dụ, giả sử ta chọn x = 1, y = 1 và z = 1 làm giá trị ban đầu. Sau đó, ta thực hiện các bước sau:
Bước 1: Tính toán giá trị mới cho x, y và z bằng cách sử dụng các phương trình đã cho: x_new = (2y - 1) / sqrt(y) y_new = (2z - 1) / sqrt(z) z_new = (2*x - 1) / sqrt(x)
Bước 2: Kiểm tra độ chính xác của giá trị mới so với giá trị cũ. Nếu đạt được độ chính xác mong muốn, ta dừng lại. Nếu không, ta lặp lại bước 1 với giá trị mới của x, y và z.
Tiếp tục lặp lại quá trình trên cho đến khi đạt được độ chính xác mong muốn. Khi đó, ta sẽ có giá trị x, y và z tương ứng là nghiệm của hệ phương trình đã cho.
a) Ta có: \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=8\\-x+2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{7}\\-x=3-2y=3-2\cdot\dfrac{8}{7}=\dfrac{5}{7}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x+2\sqrt{3}\cdot y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3}x+6y=\sqrt{3}\\2\sqrt{3}x+4y=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=\sqrt{3}+10\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}+2\cdot\dfrac{\sqrt{3}+10}{2}=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}=-5-\sqrt{3}-10=-15-\sqrt{3}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=\left(y-1\right)\left(x-\text{4}\right)\\\left(2x+3\right)\left(2y+1\right)=\left(y-1\right)\left(4x+1\right)\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy+2x+2y+4=xy-4y-x+4\\4xy+2x+6y+3=4xy-4x+y-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}3x+6y=0\\6x+5y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=\dfrac{4}{7}\end{matrix}\right.\)(TM)
\(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}5x-5y-6x-9y=12\\3x+6y-4x-8y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-x-14y=12\\-x-2y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-\dfrac{26}{3}\\y=-\dfrac{7}{12}\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y) = (\(-\dfrac{26}{3};-\dfrac{7}{12}\))
Nhận xét: từ hệ => x, y, z đông thời bằng 0 hoặc đồng thời khác 0
TH1: x = y = z =0.
=> ( 0; 0; 0 ) là 1 nghiệm.
TH2: x ; y ; z đồng thời khác 0
\(\hept{\begin{cases}\sqrt{x}\left(1+y\right)=2y\\\sqrt{y}\left(1+z\right)=2z\\\sqrt{z}\left(1+x\right)=2x\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{1}{y}+1=\frac{2}{\sqrt{x}}\\\frac{1}{z}+1=\frac{2}{\sqrt{y}}\\\frac{1}{x}+1=\frac{2}{\sqrt{z}}\end{cases}}\)
Cộng vế theo vế sau đó đưa về hằng đẳng thức để đánh giá.
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} (\sqrt{2}+1)(\sqrt{2}-1)x+2(\sqrt{2}+1)y=\sqrt{2}+1\\ 8x-2(\sqrt{2}+1)y=6\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x+2(\sqrt{2}+1)y=\sqrt{2}+1\\ 8x-2(\sqrt{2}+1)y=6\end{matrix}\right.\)
\(\Rightarrow 9x=7+\sqrt{2}\) (cộng 2 vế của PT)
\(\Rightarrow x=\frac{7+\sqrt{2}}{9}\)
\(y=\frac{1-(\sqrt{2}-1)x}{2}=\frac{7-3\sqrt{2}}{9}\)
Vậy..............
ĐKXĐ: \(x,y,z\ge0\)
Từ pt đầu tiên, áp dụng BĐT Cauchy: \(1+y\ge2\sqrt{y}\) \(\Rightarrow\sqrt{x}\left(1+y\right)\ge2\sqrt{xy}\)
\(\Rightarrow2y\ge2\sqrt{xy}\Rightarrow\sqrt{y}\ge\sqrt{x}\Rightarrow y\ge x\)
Tương tự ta có \(2z=\sqrt{y}\left(1+z\right)\ge2\sqrt{yz}\Rightarrow z\ge y\)
\(2x=\sqrt{z}\left(1+x\right)\ge2\sqrt{xz}\Rightarrow x\ge z\)
\(\Rightarrow\left\{{}\begin{matrix}y\ge x\\z\ge y\\x\ge z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Thay vào pt đầu ta được:
\(\sqrt{x}\left(1+x\right)=2x\Leftrightarrow2x-\sqrt{x}\left(1+x\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1-x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-x+2\sqrt{x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-\left(\sqrt{x}-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)
Vậy hệ có 2 bộ nghiệm:
\(\left(x,y,z\right)=\left(0,0,0\right);\left(1,1,1\right)\)