Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Điều kiện \(x\le2;y\ge-1;y^3\left(2x-y\right)\ge0;5y^2-4x^2\ge0\)
Sử dụng bất đẳng thức AM-GM cho 2 số không âm ta có :
\(\sqrt{y^3\left(2x-y\right)}=\sqrt{y^2\left(2xy-y^2\right)}\le\frac{y^2+2xy-y^2}{2}=xy\)
\(\sqrt{x^2\left(5y^2-4x^2\right)}\le\frac{x^2+5y^2-4x^2}{2}=\frac{5y^2-3x^2}{2}\)
Suy ra :
\(3\sqrt{y^3\left(2x-y\right)}+\sqrt{x^2\left(5y^2-4x^2\right)}\le3xy+\frac{5y^2-3x^2}{2}\)
Vì vậy ta phải có : \(4y^2\le3xy+\frac{5y^2-3x^2}{2}\Leftrightarrow3\left(x-y\right)^2\le0\Leftrightarrow x=y\)
Vậy phương trình đầu của hệ tương đương với : x=y
Thay y=x vào phương trình thứ 2 của hệ ta được :
\(\sqrt{2-x}+\sqrt{x+1}+2=x+x^2\) (*)
Do \(\sqrt{2-x}+\sqrt{x+1}>0\Rightarrow x>1\)(do \(x\ge-1\)
Khi đó phương trình (*) tương đương với :
\(x^2-x-1+\left(x-1-\sqrt{2-x}\right)+\left(x-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-x-1\right)\left(1+\frac{1}{x-1+\sqrt{2-x}}+\frac{1}{x+\sqrt{x+1}}\right)=0\)
\(\Leftrightarrow x^2-x-1=0\) (do \(1+\frac{1}{x-1+\sqrt{2-x}}+\frac{1}{x+\sqrt{x+1}}>0\))
\(\Leftrightarrow\begin{cases}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}\)
\(\Leftrightarrow x=y=x=\frac{1+\sqrt{5}}{2}\)
Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{1+\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right)\)
1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)
\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)
Điều kiện : \(y^2-2\ge0;xy^2-2x-2\ge0\)
\(x^2+\left(y^2-y-1\right)\sqrt{x^2+2}-y^3+y+2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}-y\right)\left(y^2+\sqrt{x^2+2}-1\right)=0\)
\(y=\sqrt{x^2+2}\Leftrightarrow\begin{cases}y\ge0\\y^2=x^2+2\end{cases}\) (Do \(y^2+\sqrt{x^2+2}-1>0\) với mọi x, y)
Thay \(y^2=x^2+2\) vào phương trình thứ 2 của hệ ta được phương trình như sau với điều kiện \(x\ge\sqrt[3]{2}\)
\(\sqrt[3]{x^2-1}-\sqrt{x^3-2}+x=0\Leftrightarrow\left(\sqrt[3]{x^2-1}-2\right)+x-3=\sqrt{x^3-2}-5\)
\(\Leftrightarrow\left(x-3\right)\left[\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1\right]=\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\sqrt{x^3-2}+5}\)
\(\begin{cases}x=3\\\left[\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1\right]=\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\sqrt{x^3-2}+5}\end{cases}\) (*)
Ta thấy :
#) \(\frac{x^2+3x+9}{\sqrt{x^3-2}+5}>2\Leftrightarrow x^2+3x-1>2\sqrt{x^3-2}\)
\(\Leftrightarrow\left(x^2+3x-1\right)^2>4\left(x^3-2\right)\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x-3\right)^2+5x^2>0\) với mọi x
#) \(\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1<2\Leftrightarrow\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+1>x\) (**)
Đặt \(t=\sqrt[3]{x^2-1},t>0\), khi đó (**) trở thành :
\(t^2+2t+1>\sqrt{t^3+1}\Leftrightarrow\left(t^2+2t+1\right)^2>t^3+1\Leftrightarrow t^4+3t^3+6t^2+4t>0\)
Đúng với mọi t>0
Suy ra (*) vô nghiệm
Vậy hệ có 1 nghiệm duy nhất \(\left(x,y\right)=\left(3;\sqrt{11}\right)\)
1,\(x^2-2y^2-xy=0\)
<=> \(\left(x-2y\right)\left(x+y\right)=0\)
<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)
Sau đó bạn thế vào PT dưới rồi tính
3. ĐKXĐ \(x\le1\); \(x+2y+3\ge0\)
.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)
<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)
<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)
Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\); \(x\le1\)nên \(-y^2+x+2y-4< 0\)
=> \(x=2y\)
Thế vào Pt còn lại ta được
\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)
<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)
<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )
Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)
\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\left(1\right)\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\left(2\right)\end{cases}\)
Điều kiện xác định : mọi \(x\in Z\)
Ta có : \(xy\left(x+1\right)=x^3+y^2+x-y\Leftrightarrow x^3-x^2y+y^2-xy+x-y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y-1\right)=0\Leftrightarrow\begin{cases}y=x\\y=x^2+1\end{cases}\)
Với \(y=x^2+1\) thay vào phương trình (2) ta được :
\(3\left(x^2+1\right)\left(2+\sqrt{9x^2+3}\right)+\left(4x^2+6\right)\left(\sqrt{1+x+x^2}+1\right)=0\)
Giải ra ta có phương trình vô nghiệm
Với y=x, thay vào phương trình thứ 2, ta được :
\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\)
\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=-\left(2x+1\right)\left(\sqrt{3+\left(2x+1\right)^2}+2\right)\)
\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=\left(-2x-1\right)\left(\sqrt{3+\left(-2x-1\right)^2}+2\right)\)
Xét hàm số \(f\left(t\right)=t\left(\sqrt{t^2+2}+2\right)\)
Ta có : \(f'\left(t\right)=\sqrt{t^2+2}+2+\frac{t^2}{\sqrt{t^2+2}}>0\) suy ra hàm số đồng biến
Từ đó suy ra \(3x=-2x\Leftrightarrow x=-\frac{1}{5}\)
Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(-\frac{1}{5};-\frac{1}{5}\right)\)