K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

a: \(\left\{{}\begin{matrix}\dfrac{-5x+2y}{3}+5=\dfrac{y+27}{4}-2x\\\dfrac{x+1}{3}+y=\dfrac{6y-5x}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(-5x+2y\right)+60=3\left(y+27\right)-24x\\7\left(x+1\right)+21y=3\left(6y-5x\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-20x+8y+60=3y+81-24x\\7x+7+21y=18y-15x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-20x+8y-3y+24x=21\\7x+21y-18y+15x=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+5y=21\\22x+3y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+15y=63\\110x+15y=-35\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-98x=98\\4x+5y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\5y=21-4x=21+4=25\end{matrix}\right.\)

=>x=-1 và y=5

b: \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(xy+3x+2y+6\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(xy-2x-2y+4\right)=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy+3x+2y+6-xy=100\\xy-\left(xy-2x-2y+4\right)=64\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+2y=94\\2x+2y=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=34\\2x+2y=60\end{matrix}\right.\)

=>x=34 và y=-4

c: \(\left\{{}\begin{matrix}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{matrix}\right.\)

\(\left\{{}\begin{matrix}xy-x+20y-20=xy\\xy+x-10y-10=xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x+20y=20\\x-10y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10y=30\\x-10y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3\\x=10y+10=30+10=40\end{matrix}\right.\)

d: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-2y\\x< >-\dfrac{y}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{2x+y}=3\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{x+2y}+\dfrac{2}{2x+y}=6\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2x+y}=5\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=1\\\dfrac{4}{x+2y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=1\\2x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=1-2y=1-\dfrac{2}{3}=\dfrac{1}{3}\end{matrix}\right.\)(nhận)

e: ĐKXĐ: x<>-1 và y<>-4

\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=\dfrac{27}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{9}\\y=-\dfrac{87}{19}\end{matrix}\right.\left(nhận\right)\)

bài 1: giải các hệ phương trình 1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) x+y=9 2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\) \(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\) 3)\(2|x|-y=3\) \(|x|+y=3\) 4)\(2\left(x+y\right)+\sqrt{x+1}=4\) \(\left(x+y\right)-3\sqrt{x+1}=-5\) 5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\) \(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\) 6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\) \(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\) 7)...
Đọc tiếp

bài 1: giải các hệ phương trình

1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)

x+y=9

2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)

\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)

3)\(2|x|-y=3\)

\(|x|+y=3\)

4)\(2\left(x+y\right)+\sqrt{x+1}=4\)

\(\left(x+y\right)-3\sqrt{x+1}=-5\)

5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)

\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)

6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)

7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)

\(\dfrac{3}{x}-\dfrac{1}{y}=2\)

8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)

\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)

9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)

\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)

10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)

11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)

\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)

12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)

13) \(3\sqrt{x-1}+2\sqrt{y}=13\)

\(2\sqrt{x-1}-\sqrt{y}=4\)

14) 6x + 6y = 5xy

\(\dfrac{4}{x}-\dfrac{3}{y}=1\)

1
24 tháng 2 2018

mọi người giúp mk với gianroi

câu 6 sai nha

sửa : \(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=3\)

28 tháng 12 2021

Xem lại đề

28 tháng 9 2021

h) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{3}{x}-\dfrac{4}{y}=-1\end{matrix}\right.\)\(\left(1\right)\)\(\left(đk:x,y\ne0\right)\)

Đặt \(a=\dfrac{1}{x},b=\dfrac{1}{y}\)

\(\left(1\right)\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=2\\3a-4b=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6\\3a-4b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\7b=7\end{matrix}\right.\)\(\Leftrightarrow a=b=1\)

Thay a,b:

\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=1\Leftrightarrow x=y=1\left(tm\right)\)

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
9 tháng 10 2021

6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)

8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y

(Các câu khác tương tự nhé.)

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

Hệ hai phương trình bậc nhất hai ẩn

18 tháng 1 2022

ĐKXĐ: x # -1/2; y # -2

\(Đặt\ \dfrac{x-1}{2x+1}=a; \dfrac{y-2}{y+2}=b \\Hệ\ tương\ đương: \\\begin{cases} a-b=1\\3a+2b=3 \end{cases} <=> \begin{cases} 3a-3b=3\\3a+2b=3 \end{cases} \\<=>\begin{cases} -5b=0\\a-b=1 \end{cases} <=>\begin{cases} b=0\\a=1 \end{cases} \\->\begin{cases} x-1=2x+1\\y-2=0 \end{cases} <=>\begin{cases} x=-2(thoả\ ĐKXĐ)\\y=2(thoả\ ĐKXĐ) \end{cases}\)

18 tháng 1 2022

Sao x - 1 lại bằng 2x + 1 ạ?

17 tháng 1 2018

hỏi trước tí, bạn biết giải cái hệ này chứ?

\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)