\(\left\{{}\begin{matrix}x+y+z=100\\5x+3y+\frac{z}{3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)

5 tháng 5 2017

a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).

30 tháng 3 2017

a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)

\(x=\dfrac{2}{41}\) ; \(y=\dfrac{-48}{41}\)

b. \(\left\{{}\begin{matrix}\text{−2x+3y=5}\\5x+2y=4\end{matrix}\right.\)

\(x=\dfrac{2}{19};y=\dfrac{33}{19}\)

c.\(\left\{{}\begin{matrix}\text{2x−3y+4z=−5}\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)

\(x=\dfrac{22}{101};y=\dfrac{131}{101};z=\dfrac{-39}{101}\)

d. \(\left\{{}\begin{matrix}\text{− x + 2 y − 3 z = 2}\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)

\(x=-4;y=\dfrac{11}{7};z=\dfrac{12}{7}\)

2 tháng 4 2017

a)x=0,05 ; y=-1,17

b.x=0,11 ; y=1,74

c.x=0,22 ;y=1,29 z=-0.39

d.x=-4 y=1,57 z=1,71

4 tháng 5 2017

b) Đặt \(\left\{{}\begin{matrix}x+y+z=7\left(1\right)\\3x-2y+2z=5\left(2\right)\\4x-y+3z=10\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)+\left(2\right)\) ta có: \(4x-y+3z=12\). (4)
Từ (3) và (4): \(\left\{{}\begin{matrix}4x-y+3z=12\\4x-y+3z=10\end{matrix}\right.\) (vô nghiệm).
Vậy hệ phương trình vô nghiệm.

17 tháng 5 2017

a) \(\left\{{}\begin{matrix}x+2y-3z=2\\2x+7y+z=5\\-3x+3y-2z=-7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2y-3z=2\\3y+7z=1\\-32z=-4\end{matrix}\right.\)

Đáp số : \(\left(x,y,z\right)=\left(\dfrac{55}{24},\dfrac{1}{24},\dfrac{1}{8}\right)\)

b) \(\left\{{}\begin{matrix}-x-3y+4z=3\\3x+4y-2z=5\\2x+y+2z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\-5y+10z=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\0y+0z=-4\end{matrix}\right.\)

Phương trình cuối vô nghiệm, suy ra hệ phương trình đã cho vô nghiệm

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

hệ phương trình 1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\) 3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\) 4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\) 5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\) 6 ,...
Đọc tiếp

hệ phương trình

1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\)

4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\)

5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}\frac{x+1}{y-1}=5\\3\left(2x-2\right)-4\left(3x+4\right)=5\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}2x+y=4\\\left|x-2y\right|=3\end{matrix}\right.\)

8 , \(\left\{{}\begin{matrix}\frac{2x}{x+1}+\frac{y}{y+1}=3\\\frac{x}{x+1}-\frac{3y}{y+1}=-1\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}y-\left|x\right|=1\\2x-y=1\end{matrix}\right.\)

10 , \(\left\{{}\begin{matrix}\sqrt{x+3y}=\sqrt{3x-1}\\5x-y=9\end{matrix}\right.\)

0
17 tháng 11 2017

a,\(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-14x+6y=-10\\15x+6y=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

\(\Leftrightarrow2x-y=3\)

b,\(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow2x-y=3\)

Vậy hệ phương trình có vô số nghiệm (x;y)= (a;2a-3), a tùy ý

c, \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,6x-0,4y=0,8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=15\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=20,5\end{matrix}\right.\)

d, \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{3}{5}x-\dfrac{1}{2}y=\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{6}y=\dfrac{8}{5}\\\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{14}{11}\\y=-\dfrac{48}{55}\end{matrix}\right.\)