\(\left(x,y,z\in R\right)\)

\(\hept{\begi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Ta có: \(\hept{\begin{cases}6x-y+z^2=3\left(1\right)\\x^2-y^2-2z=-1\left(2\right)\\6x^2-3y^2-y-2z^2=0\left(3\right)\end{cases}}\)

Lấy (1) - (3) rồi rút gọn được

\(-6x^2+3y^2+3z^2+6x=3\left(4\right)\)

Lấy 3(2) + (4) rồi rút gọn ta được

\(-x^2+z^2-2z+2x=0\)

\(\Leftrightarrow\left(z-x\right)\left(z+x-2\right)=0\)

Tự làm phần còn lại nhé

22 tháng 2 2017

hay nhất đoạn lấy 3(2)-(4)  

12 tháng 8 2018

ta có : \(x^2-y^2-2z+1=0=>3x^2-3y^2-6z+3=0\\ \)

\(6x-y+z^2-3=0\)

=> \(6x^2-3y^2-2z^2-y-3x^2+3y^2+6z-3-6x+y-z^2+3=0\\ \)

=> \(3x^2-6x+3-\left(3x^2-6z+3\right)=0\\ \)

=>\(3\left(x-1\right)^2-3\left(z-1\right)^2=0\\ \)

=>\(\left(x+z-2\right)\left(x-z\right)=0\)

 phần còn lại bạn tự giải nhá

1 tháng 3 2020

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

Dùng cái đầu đi ạ

27 tháng 1 2017

Nhận xét: Nếu hệ có nghiệm thì nghiệm đó phải thoả \(x,y,z\ge0\).

------

Kí hiệu hàm số \(f\left(x\right)=\frac{2x^2}{x^2+1}\).

Giả sử \(0\le x\le y\) (\(x,y\) này ko liên quan đến hệ). Khi đó ta phát biểu \(f\left(x\right)\le f\left(y\right)\) và biến đổi tương đương thì thấy đúng.

------

Quay lại hệ. Viết lại hệ dưới dạng: \(\hept{\begin{cases}x=f\left(z\right)\\y=f\left(x\right)\\z=f\left(y\right)\end{cases}}\)

Do hệ là bất biến theo phép hoán vị vòng quanh nên ko mất tính tổng quát chỉ cần xét 2 trường hợp:

Trường hợp 1: \(0\le x\le y\le z\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(y\right)\le f\left(z\right)\) hay \(y\le z\le x\).

Vậy \(x=y=z\) trong trường hợp này.

Trường hợp 2: \(0\le x\le z\le y\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(z\right)\le f\left(y\right)\) hay \(y\le x\le z\).

Vậy \(x=y=z\) trong trường hợp này.

Tổng hợp lại, trong cả 2 trường hợp ta chỉ cần giải MỘT pt đó là \(\left(x^2+1\right)x=2x^2\).

Pt có nghiệm \(x=0,x=1\).

Vậy \(x=y=z=0,x=y=z=1\) là 2 nghiệm của hệ.

27 tháng 1 2017

chịu ảnh dùng kiến thức thấp hơn được không

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)