\(\left\{{}\begin{matrix}x+y+z=6\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

\(\left\{{}\begin{matrix}x+y+z=6\left(1\right)\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x+y+z\right)^2=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}xy+yz+xz=11\\xy+yz-xz=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}xy+yz=\frac{11+7}{2}=9\\xz=\frac{11-7}{2}=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y\left(x+z\right)=9\\x=\frac{2}{z}\end{matrix}\right.\)

=>\(y\left(\frac{2}{z}+z\right)=9\)

<=> \(y=\frac{9}{\frac{2}{z}+z}=\frac{9}{\frac{2+z^2}{z}}=\frac{9z}{2+z^2}\)

Thay \(x=\frac{2}{z},y=\frac{9z}{2+z^2}\) vào (1) có:

\(\frac{2}{z}+\frac{9z}{2+z^2}+z=6\)

<=> \(\frac{2\left(2+z^2\right)+9z^2+z^2\left(2+z^2\right)}{z\left(2+z^2\right)}=6\)

<=>\(4+2z^2+9z^2+2z^2+z^4=6z\left(2+z^2\right)\)

<=> \(z^4+13z^2+4-12z-6z^3=0\)

<=> \(z^4-3z^3+2z^2-3z^3+9z^2-6z+2z^2-6z+4=0\)

<=>\(z^2\left(z^2-3z+2\right)-3z\left(z^2-3z+2\right)+2\left(z^2-3z+2\right)=0\)

<=> \(\left(z^2-3z+2\right)^2=0\)

<=> \(z^2-3z+2=0\)<=> \(z\left(z-2\right)-\left(z-2\right)=0\)

<=> \(\left(z-1\right)\left(z-2\right)=0\)

=>\(\left[{}\begin{matrix}z=1\\z=2\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\frac{2}{z}=2,y=\frac{9z}{2+z^2}=3\\x=1,y=3\end{matrix}\right.\)

Vậy (x,y,z) \(\in\left\{\left(2,3,1\right),\left(1,3,2\right)\right\}\)

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Lời giải:

\(\Rightarrow (x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=36\)

Kết hợp với \(x^2+y^2+z^2=14\Rightarrow xy+yz+xz=11\)

\(\left\{\begin{matrix} xy+yz-xz=7\\ xy+yz+xz=11\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xz=2\\ xy+yz=9\rightarrow y(6-x)=9\rightarrow y=3\rightarrow x+z=3\end{matrix}\right.\)

Từ \(\left\{\begin{matrix} xz=2\\ x+z=3\end{matrix}\right.\Rightarrow \left[ \begin{array}{ll} (x,z)=(2,1) \\ \\ (x,z)=(1,2) \end{array} \right.\)

Vậy HPT có nghiệm \((x,y,z)=(2,3,1),(1,3,2)\)

31 tháng 1 2017

@Nguyễn Huy Thắng @Akai Haruma @Hoàng Lê Bảo Ngọc @Trần Việt Linh @Nguyễn Huy Tú Nguyễn Phương Trâm Hung nguyen ......................

24 tháng 9 2018

\(\left\{{}\begin{matrix}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-x-y-1=-2\\yz-y-z-1=4\\zx-z-x-1=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=-2\\\left(y-1\right)\left(z-1\right)=4\\\left(z-1\right)\left(x-1\right)=1\end{matrix}\right.\)

24 tháng 9 2018

Bạn biến đổi sai rồi

1 tháng 7 2020

Ta có: x2 + y2 + z2 = xy + yz + zx

<=> [(x - y)2 + (y - z)2 + (z - x)2] . 1/2 = 0

<=> x = y = z

Thay vào pt thứ 2...

25 tháng 4 2020

Natsu Dragneel 2005 pha gần cuối phải là:

\(3.x^{2015}=3.3^{2015}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)

ms đúng nha!

25 tháng 4 2020

AD BĐT cô - si cho ba số không âm x2 ; y2 ; z2 , ta có :

x2 + y2 ≥ 2√x2y2 = 2xy ( dấu bằng xảy ra khi x = y )

Tương tự : y2 + z2 ≥ 2yz ( dấu ... khi y = x )

z2 + x2 ≥ 2zx ( ... z = x )

⇒ 2 ( x2 + y2 + z2 ) ≥ 2 ( xy + yz + zx )

⇔ x2 + y2 + z2 ≥ xy + yz + zx

Dấu = xảy ra khi x = y = z

⇒ x2015 + y2015 + z2015 = 3x2015 = 32016

⇔ 32015. x = 32015. 3 ⇒ x = 3

⇒ x = y = z = 3

11 tháng 1 2019

hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )

Cộng từng vế của các pt lại với nhau , ta có :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)

\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)

\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)

\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)

11 tháng 1 2019

hình như kết quả sai r đó bạn :)

18 tháng 2 2017

\(\left\{\begin{matrix}x+xy+y=1\\y+yz+z=3\\z+zx+x=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(x+1\right)\left(y+1\right)=2\left(1\right)\\\left(y+1\right)\left(z+1\right)=4\left(2\right)\\\left(z+1\right)\left(x+1\right)=8\left(3\right)\end{matrix}\right.\)

Lấy 2(1) - (2) ta được

\(2\left(x+1\right)\left(y+1\right)-\left(y+1\right)\left(z+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(2x-z+1\right)=0\)

\(\Leftrightarrow\left\{\begin{matrix}y=-1\\z=2x+1\end{matrix}\right.\)

Với y = -1 thì hệ vô nghiệm

Với z = 2x + 1 thì thế vô 3 được

\(\left(x+1\right)^2=4\)

\(\Leftrightarrow\left[\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Với x = 1 thì

\(\Rightarrow\left\{\begin{matrix}y=0\\z=3\end{matrix}\right.\)

Với x = - 3 thì

\(\Rightarrow\left\{\begin{matrix}y=-2\\z=-5\end{matrix}\right.\)

18 tháng 2 2017

\(\left\{\begin{matrix}x+xy+y=1\left(1\right)\\y+yz+z=3\left(2\right)\\z+zx+x=7\left(3\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\left(y+1\right)+\left(y+1\right)=2\\y\left(z+1\right)+\left(z+1\right)=4\\z\left(x+1\right)+\left(x+1\right)=8\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(y+1\right)\left(x+1\right)=2\left(1\right)\\\left(z+1\right)\left(y+1\right)=4\left(2\right)\\\left(x+1\right)\left(z+1\right)=8\left(3\right)\end{matrix}\right.\)(II)

Nhân theo vế: \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=2.4.8=64\)

\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\left(5\right)\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\left(6\right)\end{matrix}\right.\)

(5) và (II) \(\Leftrightarrow\left\{\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}z=-5\\x=-1\\y=-2\end{matrix}\right.\)

(6)và(II)\(\Leftrightarrow\left\{\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}z=3\\x=1\\y=0\end{matrix}\right.\)