\(\left\{{}\begin{matrix}x+y+z=6\\x^2+y^2+z^2=18\\\sqrt{x}+\sqrt{y}+\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2020

Thằng này mày được. :)

18 tháng 7 2020

Trần Quốc Lộc sao anh :))))

NV
13 tháng 6 2019

ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=12\\\frac{\sqrt{x}}{5}+\frac{\sqrt{y}}{2}+\sqrt{z}=\frac{\sqrt{x}}{5}.\frac{\sqrt{y}}{2}.\sqrt{z}\end{matrix}\right.\)

Đặt \(\left(\frac{\sqrt{x}}{5};\frac{\sqrt{y}}{4};\frac{\sqrt{z}}{3}\right)=\left(a;b;c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5a+4b+3c=12\\a+2b+3c=6abc\end{matrix}\right.\)

Từ pt đầu ta có:

\(12=5a+4b+3c\ge12\sqrt[12]{a^5.b^4.c^3}\Leftrightarrow a^5b^4c^3\le1\) (1)

Từ pt sau:

\(6abc=a+2b+3c\ge6\sqrt[6]{ab^2c^3}\Leftrightarrow abc\ge\sqrt[6]{ab^2c^3}\)

\(\Leftrightarrow a^6b^6c^6\ge ab^2c^3\Leftrightarrow a^5b^4c^3\ge1\) (2)

Từ (1) và (2) \(\Rightarrow a^5b^4c^3=1\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

\(\Rightarrow\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(5;4;3\right)\Rightarrow\left(x;y;z\right)=\left(25;16;9\right)\)

30 tháng 11 2019

a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:

\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)

\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)

\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)

\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)

P/s: Không chắc cho lắm ạ.

29 tháng 11 2019

Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,

Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6

Help meeee, please!

thanks nhiều

31 tháng 1 2020

Giúp em với ạ Akai Haruma

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

PT $(1)$ tương đương với:

$x+2\sqrt{x}+1=y+z+2\sqrt{yz}+2\sqrt{y}+2\sqrt{z}+1$

$\Leftrightarrow (\sqrt{x}+1)^2=(\sqrt{y}+\sqrt{z}+1)^2$

\(\left[\begin{matrix} \sqrt{x}=\sqrt{y}+\sqrt{z}\\ \sqrt{x}=-(\sqrt{y}+\sqrt{z})\end{matrix}\right.\)

Nếu $\sqrt{x}=-(\sqrt{y}+\sqrt{z})$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}=0\Rightarrow x=y=z=0$ (không thỏa mãn PT $(2)$)

Nếu $\sqrt{x}=\sqrt{y}+\sqrt{z}$

$\Rightarrow 3\sqrt{yz}=(\sqrt{y}+\sqrt{z})^2-\sqrt{3z}+1$

$\Leftrightarrow \sqrt{yz}=y+z-\sqrt{3z}+1$

$\Leftrightarrow 4y+4z-4\sqrt{yz}-4\sqrt{3z}+4=0$

$\Leftrightarrow (2\sqrt{y}-\sqrt{z})^2+(\sqrt{3z}-2)^2=0$

$\Rightarrow (2\sqrt{y}-\sqrt{z})^2=(\sqrt{3z}-2)^2=0$

$\Rightarrow z=\frac{4}{3}; y=\frac{1}{3}; x=3$