Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: ..
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}-\sqrt{2\left(x+y\right)}=4\\x+2y+\dfrac{2\sqrt{\left(x+y\right)\left(2x+5y\right)}}{3}=24\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}=a\ge0\\\sqrt{2\left(x+y\right)}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{a^2+b^2}{6}+\dfrac{ab}{3}=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left(a+b\right)^2=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left[{}\begin{matrix}a+b=12\\a+b=-12\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(8;4\right)\\\left(a;b\right)=\left(-4;-8\right)\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(2x+5y\right)=64\\2\left(x+y\right)=16\end{matrix}\right.\) \(\Leftrightarrow...\)
b.
Thế pt trên xuống dưới:
\(x^4+6y^4=\left(x+2y\right)\left(x^3+3y^3-2xy^2\right)\)
\(\Leftrightarrow2x^3y-2x^2y^2-xy^3=0\)
\(\Leftrightarrow xy\left(2x^2-2xy-y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-\left(1+\sqrt{3}\right)x\\y=\left(-1+\sqrt{3}\right)x\end{matrix}\right.\)
Thế vào pt đầu ...
Đề cho hơi xấu, nếu pt đầu là \(x^3+3y^3-2x^2y=1\) thì đẹp hơn nhiều
\(2x^2+30xy=5\left(x+5y\right)\sqrt{5xy}-50y^2\)\(\left(đk:x;y\ge0\right)\)
\(\Leftrightarrow2x^2+30xy-5\left(x+5y\right)\sqrt{5xy}+50y^2=0\left(1\right)\)
\(đặt:\sqrt{5xy}=b\ge0\Rightarrow5xy=b^2\Rightarrow10xy=2b^2\)
\(x+5y=a\ge0\Rightarrow x^2+10xy+25y^2=â^2\)
\(\Rightarrow2a^2=2x^2+20xy+50y^2\)
\(\Leftrightarrow\left(1\right)\Leftrightarrow2a^2+2b^2-5ab=0\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}b=2a\left(2\right)\\a=2b\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Rightarrow\sqrt{5xy}=2x+10y\Leftrightarrow4x^2+35xy+100y^2=0\left(4\right)\)
\(với:y=0\) \(ko\) \(là\) \(nghiệm\)
\(với:y\ne0\Rightarrow\left(4\right)\Leftrightarrow4\left(\dfrac{x}{y}\right)^2+35\left(\dfrac{x}{y}\right)+100=0\)\(\left(vô-lí\right)\)
\(do:4\left(\dfrac{x}{y}\right)^2+35\left(\dfrac{x}{y}\right)+100>0\)
\(\left(3\right)\Rightarrow x+5y=2\sqrt{5xy}\Leftrightarrow x^2+10xy+25y^2=20xy\Leftrightarrow x^2-10xy+25y^2=0\Leftrightarrow\left(x-5y\right)^2=0\Leftrightarrow x=5y\)
\(thay:x=5y\) \(vào:2x^2+y^2=51\Rightarrow2\left(5y\right)^2+y^2-51=0\Leftrightarrow51y^2-51=0\Leftrightarrow\left[{}\begin{matrix}y=1\left(tm\right)\Rightarrow x=5\left(tm\right)\\y=-1\left(loại\right)\end{matrix}\right.\)
Xét \(y=0\)\(\Rightarrow...\)
Xét \(y\ne0\). Ta có:
\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x=5y-y^2-xy\left(1\right)\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2), ta có:
\(\left(5y-y^2-xy\right)\left(x+y-3\right)=-3y\)
\(-y\left(x+y-5\right)\left(x+y-3\right)=-3y\)
\(\Leftrightarrow\left(x+y-5\right)\left(x+y-3\right)=3\left(\cdot\right)\)
Đặt \(x+y-5=t\), phương trình \(\left(\cdot\right)\) trở thành
\(t\left(t+2\right)=3\)\(\Leftrightarrow t^2+2t+1=4\Leftrightarrow\left(t+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}t+1=2\\t+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-5=1\\x+y-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\\x+y=2\end{matrix}\right.\)\(\Rightarrow...\)
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
ĐKXĐ:...
\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)
Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:
\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)
\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)
\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)
Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)
\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)
\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)
Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)
\(\Rightarrow t-3=0\)
\(\Leftrightarrow t=3\)
\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)
Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)
\(\Leftrightarrow2y^2-1=0\)
\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)
\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)
Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
Trừ theo vế 2 phương trình ta được:
\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)
Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)
\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.
Do đó \(x=y\)
Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy...
Đề có vẻ sai sai. Bạn xem lại đề xem có đúng không?
Phiền bạn chủ tus và chị Akai Haruma . Chị ơi chị giúp e câu hỏi e gửi trong inbox nhé ! Nhờ chị từ hôm kia mà k thấy chị nói gì em mới cmt là phiền . Nếu chị đọc được thì chị xóa giùm em !
\(2.\left(1\right)-\left(2\right)\) \(\Rightarrow3x^2+3y^2+6xy-10x-10y-8=0\)
\(\Leftrightarrow3\left(x+y\right)^2-10\left(x+y\right)-8=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-\frac{2}{3}-x\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu là xong
a, hệ\(\Leftrightarrow\)$\left \{ {{x>\frac{1}{2} } \atop {x<m+2}} \right.$
để hệ có nghiệm ⇒ m+2< $\frac{1}{2}$ ⇒ m<$\frac{-3}{2}$
\(\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\2x^2+xy+2y^2=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2x^2+2y^2+xy=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2\left(x^2+y^2\right)+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy-3xy=-1\\2\left(\left(x+y\right)^2-2xy\right)+xy=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-4xy+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-3xy=8\end{matrix}\right.\)....(1)
đặt : \(\left\{{}\begin{matrix}xy=u\\x+y=v\end{matrix}\right.\) \(\Rightarrow\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}v^2-5u=-1\\2v^2-3u=8\end{matrix}\right.\) giải phương trình này bằng phương pháp thế
sau khi tìm được \(u\) và \(v\) tiếp đến ta áp dụng định lí vi ét đảo để tìm \(x\) và \(y\)