K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

Trừ 2 vế của HPT

\(\Leftrightarrow x^2-xy+y^2-x+y-xy=0\\ \Leftrightarrow x^2+y^2-x+y-2xy=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)

Với \(x=y\Leftrightarrow x-x+x^2=7\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\Rightarrow y=\sqrt{7}\\x=-\sqrt{7}\Rightarrow y=-\sqrt{7}\end{matrix}\right.\)

Với \(x=y+1\Leftrightarrow y+1-y+y\left(y+1\right)=7\)

\(\Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)

Vậy ...

 

8 tháng 12 2021

x^2 - xy + y^2 = x - y + xy

<=> x^2 - 2xy + y^2 - (x - y) = 0

<=> (x - y)^2 - (x - y) = 0

<=> (x - y)(x - y - 1) = 0

TH1: x - y = 0 <=> x = y

x^2 - xy + y^2 = 7

<=> x^2 = 7 <=> x = sqrt(7) hoặc x = -sqrt(7)

Với x = sqrt(7) thì y = sqrt(7)

Với x = -sqrt(7) thì y = -sqrt(7)

TH2: x - y - 1 = 0 <=> x = y + 1

x - y + xy = 7

<=> (y + 1)y + 1 = 7

<=> y^2 + y - 6 = 0

<=> (y - 2)(y + 3) = 0

<=> y = 2 hoặc y = -3

Với y = 2 thì x = 2 + 1 = 3

Với y = -3 thì x = -3 + 1 = -2

1 tháng 5 2018

a) \(\left\{{}\begin{matrix}x^2+y^2=10\\2\left(x+y-xy\right)=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=2x+2y-2xy\\x+y-2xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=2\left(x+y\right)\\x+y-xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2\left(x+y\right)=0\\x+y-xy=10\end{matrix}\right.\)

đặt x+y=t

\(\Leftrightarrow\left\{{}\begin{matrix}t\left(t-2\right)=0\\t-xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\\xy=10+t\end{matrix}\right.\)

nếu t=0\(\left\{{}\begin{matrix}x+y=0\\xy=10\end{matrix}\right.\) loại
nếu t=2\(\left\{{}\begin{matrix}x+y=2\\xy=10\end{matrix}\right.\)

b)\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=12\\x+y+xy=7\end{matrix}\right.\) đặt a=x+y, b=xy

\(\Leftrightarrow\left\{{}\begin{matrix}ab=12\\a+b=7\end{matrix}\right.\)

NV
26 tháng 7 2020

c/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:

\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)

Bạn tự bấm máy

NV
26 tháng 7 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)

TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)

NV
7 tháng 10 2021

Cộng vế:

\(\Rightarrow x^2+y^2+2xy+x+y=20\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-5-x\end{matrix}\right.\)

Thế vào pt đầu...

21 tháng 4 2022

đặt x+y = u ; xy = v đk: u2 ≥ 4v 

\(\left\{{}\begin{matrix}u+v=5\\u^2-v=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u^2+u-12=0\left(1\right)\\u+v=5\left(2\right)\end{matrix}\right.\)

từ pt 1 => \(\left[{}\begin{matrix}u=-4\\u=3\end{matrix}\right.\)

nghiệm u = - 4 loại 

u = 3 nhận => v = 2 

<=> x+y = 3 ; xy = 2 

đặt x+y = S ; xy = P đk: S2 ≥ 4P 

=> x và y là nghiệm của phương trình 

X2 - SX + P = 0 

= X2 - 3X + 2 = 0 

=> \(\left[{}\begin{matrix}X=2\\X=1\end{matrix}\right.\)

vậy (x;y) = {(1;2);(2;1)} 

 

7 tháng 9 2019

Nhân pt thứ 2 của hệ với 19/7. Rồi lấy pt thu được trừ đi pt đầu tiên.

-> Tìm ra mối liên hệ giữa x và y -> dễ. Em nghĩ thế

5 tháng 11 2019
https://i.imgur.com/FXPkbZo.jpg
NV
12 tháng 1 2021

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt

12 tháng 1 2021

thanks bạn nha