Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ PT(1) $\Rightarrow y=\frac{3x+1}{4}$. Thay vô PT(2) thì:
$\frac{x(3x+1)}{4}=3(x+\frac{3x+1}{4})-9$
$\Leftrightarrow 3x^2-20x+33=0$
$\Leftrightarrow (3x-11)(x-3)=0$
$\Rightarrow x=\frac{11}{3}$ hoặc $x=3$
Nếu $x=\frac{11}{3}$ thì $y=\frac{3x+1}{4}=3$. HPT có nghiệm $(x,y)=(\frac{11}{3}, 3)$
Nếu $x=3$ thì $y=\frac{3x+1}{4}=\frac{5}{2}$. HPT có nghiệm $(x,y)=(3,\frac{5}{2})$
Vì 3x − 4y + 1 = 0 => 3x - 4y = -1(1)
Vì 3(x+y) − 9 = xy => 3x + 3y - 9 = xy
=> 3x - 4y + 7y - 9 = xy
Từ (1), ta có -1 + 7y - 9 = xy <=> 7y - 10 = xy
<=> y(7-x) = 10 <=> y = 10/7-x
Thay vào, ta có 3x − 4.10/7-x + 1 = 0
<=> 3x - 40/7-x + 1 = 0
<=> 3x.(7-x)-40/7-x + 1 = 0
<=> 21x - 3x^2 - 40/7-x + 1 = 0
<=> 21x - 3x^2 - 40/7-x = -1
<=> 21x - 3x^2 - 40 = x-7
<=> 3x^2 - 21x +40 = 7-x
<=> 3x^2 - 20x + 33 = 0
<=> (3x-11)(x-3) = 0
<=> x = 11/3 hoặc x = 3
<=> y = 3 hoặc y = 5/2
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
Chia hai vế của phương trình (2) và (3) lần lượt cho $12$ và $3.$
$\left\{\begin{aligned}&x-y-z=0\\&24y-12z=0\\&3x+24y=0\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x-y-z=0\\&2y = z\\&x = -8y\\ \end{aligned}\right.$
Thế $x$, $z$ lên phương trình (1) ta được:
HPT $\Leftrightarrow \left\{\begin{aligned}&-8y-y-2y=0\\&z = 2y\\&x = -8y\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&y=0\\&z = 0\\&x = 0\\ \end{aligned}\right.$.