K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1)Giải hệ phương trình với \(x,y,z\in R\)\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tốa)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn...
Đọc tiếp

1)Giải hệ phương trình với \(x,y,z\in R\)

\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   

2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố

a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)

b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)

3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :

\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)

4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\)\(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:

a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn

b)\(r=r_1+r_2\)

0
5 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)

\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)

cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ

suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý

vậy pt vô nghiệm

NV
19 tháng 1 2021

\(x^3-7x^2y+16xy^2-12y^3=0\)

\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)

Thế xuống pt dưới giải đơn giản

6 tháng 4 2021

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

DD
26 tháng 12 2022

ĐKXĐ: \(\left\{{}\begin{matrix}9y-5\ge0\\x+y\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ge\dfrac{5}{9}\\x+y\ge0\end{matrix}\right.\).

Phương trình (1) tương đương với: 

\(\left(x^2+y^2\right)\left(x+y\right)-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)-\left(x^2+y^2\right)+x^2+y^2-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)^2-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+y^2+x+y=0\end{matrix}\right.\)

- Với \(x^2+y^2+x+y=0\) có \(x+y=0\) (theo điều kiện) 

suy ra \(x=y=0\) (không thỏa mãn).

- Với \(x+y-1=0\Leftrightarrow y=1-x\) thế vào phương trình (2) ta được: 

\(x^2+11x+6=2\sqrt{9\left(1-x\right)-5}+\sqrt{1}\)

\(\Leftrightarrow x^2+11x+5-2\sqrt{14-9x}=0\)

\(\Rightarrow\left(x^2+11x+5\right)^2=4\left(14-9x\right)\)

\(\Leftrightarrow x^4+22x^3+131x^2+146x-31=0\)

Bạn giải phương trình trên, thử lại ta được nghiệm của bài toán. 

Đáp án ra số khá xấu nên thầy không ghi ra đây. 

Em có thể tham khảo cách làm nhé. 

 

 

 

NV
27 tháng 3 2019

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x}=a\\\sqrt[3]{y}=b\end{matrix}\right.\) \(\Rightarrow a+b=6\)

Biến đổi pt đầu:

\(2\left(a^3+b^3\right)=3\left(a^2b+ab^2\right)\Leftrightarrow2\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)=3ab\left(a+b\right)\)

\(\Leftrightarrow2\left(36-3ab\right)=3ab\Rightarrow ab=8\) \(\Rightarrow\left\{{}\begin{matrix}a+b=6\\ab=8\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm: \(t^2-6t+8=0\) \(\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4^3=64\\y=2^3=8\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=64\end{matrix}\right.\)

27 tháng 3 2019

Cảm ơn bạn nhiều! >v<

NV
11 tháng 9 2021

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{x+y-4}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+y=a^2\\x+y=b^2+4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-b^2-4\\y=-a^2+2b^2+8\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}a+b=19\\a-3\left(a^2-b^2-4\right)+5\left(-a^2+2b^2+8\right)=-8\end{matrix}\right.\)

Tới đây chắc là đơn giản rồi đúng không? Thế trên xuống dưới là xong thôi

11 tháng 9 2021

Vâng ạ

Em cảm ơn thầy ạ