Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/PT (1) cho ta nhân tử x - y - 1:)
\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)
ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)
PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)
Dễ thấy cái ngoặc to < 0
Do đó x= y + 1
Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)
ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)
PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)
\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)
Cái ngoặc to > 0 =>...
P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(
2/ĐK: \(x\ge-y;y\ge0\)
PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)
Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).
Do đó x = y \(\ge0\)
Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)
Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)
Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)
P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((
ĐKXĐ: \(-\dfrac{3}{2}\le x;y\le4\)
\(\Leftrightarrow\sqrt{2x+3}-\sqrt{2y+3}+\sqrt{4-y}-\sqrt{4-x}=0\)
\(\Leftrightarrow\dfrac{2\left(x-y\right)}{\sqrt{2x+3}+\sqrt{2y+3}}+\dfrac{x-y}{\sqrt{4-y}+\sqrt{4-x}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{2}{\sqrt{2x+3}+\sqrt{2y+3}}+\dfrac{1}{\sqrt{4-y}+\sqrt{4-x}}\right)=0\)
\(\Leftrightarrow x-y=0\) (do \(\dfrac{2}{\sqrt{2x+3}+\sqrt{2y+3}}+\dfrac{1}{\sqrt{4-y}+\sqrt{4-x}}>0\))
\(\Rightarrow x=y\)
Thay vào pt trên:
\(\sqrt{2x+3}+\sqrt{4-x}=4\Leftrightarrow2x+3+4-x+2\sqrt{\left(2x+3\right)\left(4-x\right)}=16\)
\(\Leftrightarrow2\sqrt{12+5x-2x^2}=9-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\4\left(12+5x-2x^2\right)=\left(9-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\9x^2-38x+33=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3;y=3\\x=\dfrac{11}{9};y=\dfrac{11}{9}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(\Leftrightarrow2x^3=x^3+y^3\)
\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)
Thay vào pt đầu:
\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)
a/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với
Theo Viet đảo, a và b là nghiệm của:
\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
Không hiểu để 3 và 4 đồng thời trong 1 pt làm gì nhỉ ? Sao không rút gọn ?
ĐKXĐ: x; y ≤ 4
hpt <=> \(\left\{{}\begin{matrix}2\left(x-4\right)+\sqrt{4-y}=-7\\2\left(y-4\right)+\sqrt{4-x}=-7\end{matrix}\right.\)
Đặt \(\sqrt{4-x}=a;\sqrt{4-y}=b\left(a;b\ge0\right)\)
Ta có: \(\left\{{}\begin{matrix}-2a^2+b=-7\\-2b^2+a=-7\end{matrix}\right.\)
=> Hệ đối xứng loại 2 đơn giản hơn rồi đó