K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a :

\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2+x^2+y^2=9\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)

Đặt \(x+y=S\) ; \(xy=P\) , phương trình trở thành :

\(\left\{{}\begin{matrix}S^2-2P+P^2=9\\S\left(P-1\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{3}{P-1}\right)^2-2P+P^2=9\\S=\dfrac{3}{P-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}P=0\\P=-2\\P=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}S=-3\\S=-1\\S=3\end{matrix}\right.\)

Với \(S=-3\)\(P=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-3\\xy=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\end{matrix}\right.\)

Với \(S=-1\)\(P=-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Với \(S=3\)\(P=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

Vậy phương trình có các cặp nghiệm là : \(\left(x;y\right)=\left(0;-3\right)\) ; \(\left(x;y\right)=\left(-3;0\right)\) ; \(\left(x;y\right)=\left(1;-2\right)\) ; \(\left(x;y\right)=\left(-2;1\right)\) ; \(\left(x;y\right)=\left(2;1\right)\) ; \(\left(x;y\right)=\left(1;2\right)\)

Wish you study well !!

Phùng Khánh Linh Ko đúng đâu ! Bạn thay \(x=y=\dfrac{1}{2}\) vào thì ra tới 10 lận . \(\dfrac{1}{\dfrac{1}{2}}+\dfrac{4}{\dfrac{1}{2}}=10\) lận cơ ?

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

Áp dụng BĐT Cô-si:

\(8x^4+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\geq 4x(1)\)

\(8y^4+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\geq 4y(2)\)

\(1=(x+y)^2\geq 4xy\Rightarrow \frac{1}{xy}\geq 4(3)\)

Lấy $(1)+(2)+(3)\Rightarrow 8(x^4+y^4)+3+\frac{1}{xy}\geq 4(x+y)+4=8$

$\Rightarrow 8(x^4+y^4)+\frac{1}{xy}\geq 5$

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

 

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)=xy+100\\\left(x-2\right)\left(y-2\right)=xy-64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=94\\-2x-2y=-68\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=26\\y=8\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=0\\-x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}xy-2x=xy-4x+2y-8\\2xy+7x-6y-21=2xy+6x-7y-21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y=-8\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)

25 tháng 5 2023

b) Xét phương trình 2 có 
(1-x2 )/(1+xy)2 - (x+y)2    - y2 =1
=>(1-x2)/1+2xy+x2y2-x2-2xy-y2   -y2=1
=>(1-x2) /(1-x2 )-y2(1-x2)       -y2 =1
=>(1-x2)/(1-x2)(1-y2)       -y2=1
=>1/(1-y2)    -y2=1
=>1=(1-y2)2
=>1=1-2y2+y4
=>y4-2y2=0
=>y2(y2-2)=0
=>y=0
y2-2=0
=> y=+√2
=> y=-√2
 Thay y vào phương trình 1 là ra x 

 

 

25 tháng 5 2023

à nhầm ... sửa lại dòng 6 
=> 1/(1-y2) - y2=1
=> 1/(1-y2)=1+y2

=> 1=1-y4
=> y=0
=>x=3
=> x=
-3
 

Bìa 1: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\) Bài 2: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\) Bài 3: Gải các...
Đọc tiếp

Bìa 1: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

Bài 2: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

Bài 3: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{3}{8}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

Bài 4: Cho hệ phương trình \(\left\{{}\begin{matrix}\left(3a-2\right)x+2\left(2b+1\right)y=30\\\left(a+2\right)x-2\left(3b-1\right)y=-20\end{matrix}\right.\) Tìm các giá trị của a,b để hệ phương trình có nghiệm (3;-1)

cảm ơn mn trước ạ ! hehe

2
12 tháng 1 2019

3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))

Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)

b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)

31 tháng 12 2022

Bài 4:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)

=>9a-6-4b-2=30 và 3a+6+6b-2=-20

=>9a-4b=38 và 3a+6b=-20+2-6=-24

=>a=2; b=-5

30 tháng 5 2022

Thay \(x=\dfrac{3}{4}y\) vào phương trình dưới, ta có:

\(\dfrac{1}{2}\left(\dfrac{3}{4}y+3\right)\left(y-2\right)-\dfrac{1}{2}.\dfrac{3}{4}y^2=9\)

\(\Leftrightarrow\dfrac{3}{8}y^2-\dfrac{3}{4}y+\dfrac{3}{2}y-3-\dfrac{3}{8}y^2=9\\ \Leftrightarrow\dfrac{3}{4}y=12\\ \Leftrightarrow y=18\Rightarrow x=12\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(12;18\right)\)

30 tháng 5 2022

ỪM

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18