Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng vế với vế:
\(x^2+2xy+y^2+x+y=12\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
a,\(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-14x+6y=-10\\15x+6y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(\Leftrightarrow2x-y=3\)
b,\(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow2x-y=3\)
Vậy hệ phương trình có vô số nghiệm (x;y)= (a;2a-3), a tùy ý
c, \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,6x-0,4y=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=20,5\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{3}{5}x-\dfrac{1}{2}y=\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{6}y=\dfrac{8}{5}\\\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{14}{11}\\y=-\dfrac{48}{55}\end{matrix}\right.\)
Điều kiện \(\left\{{}\begin{matrix}\dfrac{4x-3x^2y-9xy^2}{x+3y}\ge0\\x+3y\ne0\end{matrix}\right.\)
Với \(3y\ge x\), hệ tương đương:
\(\left\{{}\begin{matrix}\left(x^4-2x^2+4\right)\left(x^2+2\right)=6x^5y\\\left(3y-x\right)^2=\dfrac{4x}{x+3y}-3xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^6+8=6x^5y\left(1\right)\\x^3+27y^3=4x\end{matrix}\right.\left(I\right)\)
Vì \(x=0\) thì hệ vô nghiệm nên \(x\ne0\), khi đó:
\(\left(I\right)\Leftrightarrow\left\{{}\begin{matrix}1+\dfrac{8}{x^6}=\dfrac{6y}{x}\\1+\dfrac{27y^3}{x^3}=\dfrac{4}{x^2}\end{matrix}\right.\)
Đặt \(\dfrac{3y}{x}=a,\dfrac{2}{x^2}=b\) ta được hệ:
\(\Leftrightarrow\left\{{}\begin{matrix}1+a^3=2b\\1+b^3=2a\end{matrix}\right.\)
Giải hệ này ta được \(a=b\Leftrightarrow\dfrac{3y}{x}=\dfrac{2}{x^2}\Leftrightarrow y=\dfrac{2}{3x}\)
\(\left(1\right)\Leftrightarrow x^6-4x^4+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=\sqrt{1+\sqrt{5}}\\x=-\sqrt{1+\sqrt{5}}\end{matrix}\right.\)
TH1: \(x=\sqrt{2}\Rightarrow y=\dfrac{\sqrt{2}}{3}\)
TH2: \(x=-\sqrt{2}\Rightarrow y=-\dfrac{\sqrt{2}}{3}\)
TH3: \(x=\sqrt{1+\sqrt{5}}\Rightarrow y=\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)
TH4: \(x=-\sqrt{1+\sqrt{5}}\Rightarrow y=-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)
Đối chiếu với các điều kiện ta được \(\left(x;y\right)=\left(-\sqrt{1+\sqrt{5}};-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\right)\)
DK:\(y\ne0\)
PT (1) :\(3x^2+2y^2-4xy=11-\dfrac{1}{y}\left(2x+\dfrac{1}{y}\right)\)
\(\Leftrightarrow\left(x^2+\dfrac{2x}{y}+\dfrac{1}{y^2}\right)+2\left(x^2-2xy+y^2\right)=11\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)^2+2\left(x-y\right)^2=11\)
PT (2): \(2x+\dfrac{1}{y}-y=4\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)+\left(x-y\right)=4\)
Đặt \(a=x+\dfrac{1}{y};b=x-y\)
Hệ pt tt: \(\left\{{}\begin{matrix}a^2+2b^2=11\\a+b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(4-b\right)^2+2b^2=11\\a=4-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=\dfrac{5}{3}\\b=1\end{matrix}\right.\\a=4-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=\dfrac{5}{3}\\a=\dfrac{7}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}b=1\\a=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(a=\dfrac{7}{3};b=\dfrac{5}{3}\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=\dfrac{7}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=\dfrac{2}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y^2-2y+3=0\left(vn\right)\\x-y=\dfrac{5}{3}\end{matrix}\right.\)
TH2:\(a=3;b=1\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=3\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=2\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y^2-2y+1=0\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\) (thỏa mãn hệ)
Vậy hệ có nghiệm duy nhất (x;y)=(2;1).
a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :
\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)
c) Cách làm tương tự như pt a ta có :
\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)
d) Tương tự ta có :
\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
b.
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) hệ tương đương:
\(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\\\dfrac{1}{x^3}+y^3=19\end{matrix}\right.\)
Đặt \(\left(\dfrac{1}{x};y\right)=\left(u;v\right)\) ta được: \(\left\{{}\begin{matrix}uv^2+u^2v=-6\\u^3+v^3=19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3uv^2+3u^2v=-18\\u^3+v^3+19\end{matrix}\right.\)
Cộng vế với vế:
\(\left(u+v\right)^3=1\Rightarrow u+v=1\)
Thay vào \(u^2v+uv^2=-6\Rightarrow uv=-6\)
Theo Viet đảo, u và v là nghiệm của:
\(t^2-t-6=0\) \(\Rightarrow\left[{}\begin{matrix}t=-2\\t=3\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(\dfrac{1}{x};y\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(x;y\right)=\left(-\dfrac{1}{2};3\right);\left(\dfrac{1}{3};-2\right)\)
a.
ĐKXĐ: \(x\ne3\)
- Với \(x\ge0\) pt trở thành:
\(\dfrac{x^2-x-12}{x-3}=2x\Rightarrow x^2-x-12=2x^2-6x\)
\(\Leftrightarrow x^2-5x+12=0\) (vô nghiệm)
- Với \(x< 0\) pt trở thành:
\(\dfrac{x^2+x-12}{x-3}=2x\Rightarrow\dfrac{\left(x-3\right)\left(x+4\right)}{x-3}=2x\)
\(\Rightarrow x+4=2x\Rightarrow x=4>0\) (ktm)
Vậy pt đã cho vô nghiệm
1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)
\(\Rightarrow\) phương trình vô nghiệm
ĐK \(x,y\ne0\)
lấy dưới trừ trên ta đc \(3x-3y=\dfrac{x^2+2}{y^2}-\dfrac{y^2+2}{x^2}\)
\(\Leftrightarrow3x-3y=\dfrac{x^4+2x^2-y^4-2y^2}{x^2y^2}\)
\(\Leftrightarrow3x^2y^2\left(x-y\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)+2\left(x-y\right)\left(x+y\right)\)
\(\Leftrightarrow3x^2y^2\left(x-y\right)-\left(x-y\right)\left(x+y\right)\left(x^2+y^2+2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[3x^2y^2-\left(x+y\right)\left(x^2+y^2+2\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\left(1\right)\\3x^2y^2=\left(x+y\right)\left(x^2+y^2+2\right)\left(2\right)\end{matrix}\right.\)
TH1 \(\left\{{}\begin{matrix}x=y\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\3x^3-x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
TH2 \(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2+2\right)=3x^2y^2\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
giải tương tự
b) ĐKXĐ: \(x,y\neq 0\).
Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).
Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).
Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).
Vậy...
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy-4y=0\left(1\right)\\y^2-3xy-4x=0\left(2\right)\end{matrix}\right.\)
ta lấy (1)-(2)\(\Leftrightarrow x^2-3xy-4y-\left(y^2-3xy-4x\right)=0\)
\(\Leftrightarrow x^2-y^2-4y+4x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\left(3\right)\\x=-y-4\left(4\right)\end{matrix}\right.\)
từ (1)(3) ta có hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-3xy-4y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-3xx-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\-2x^2-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
từ (1)(4) ta có hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=-y-4\\x^2-3xy-4y=0\end{matrix}\right.\)
giải tương tự