K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

các bn ơi giúp mình với

 

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

NV
15 tháng 10 2020

Nhận thấy \(x=y=0\) là 1 nghiệm

Với \(xy\ne0\) hệ tương đương:

\(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{x+y}{xy}\right)\left(\frac{1+xy}{xy}\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{2}{xy}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(1+\frac{1}{xy}\right)=4\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\frac{1}{x}+\frac{1}{y}\\b=\frac{1}{xy}\end{matrix}\right.\) với \(a^2\ge4b\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-2b=2\\a\left(b+1\right)=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-2\left(b+1\right)=0\\b+1=\frac{4}{a}\end{matrix}\right.\)

\(\Rightarrow a^2-\frac{8}{a}=0\Leftrightarrow a=3\Rightarrow b=\frac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=3\\\frac{1}{xy}=\frac{1}{3}\end{matrix}\right.\) bạn tự giải nốt

28 tháng 11 2018

Ta có \(\left\{{}\begin{matrix}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(x+y\right)^2=2\left(xy\right)^2+2xy\\\left(x+y\right)\left(1+xy\right)=4\left(xy\right)^2\end{matrix}\right.\)(1)

Đặt a=x+y,b=xy

Vậy (1)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a^2=2b^2+2b\left(3\right)\\a\left(1+b\right)=4b^2\left(2\right)\end{matrix}\right.\)

Trong phương trình (2), nếu 1+b=0\(\Leftrightarrow b=-1\)

Vậy \(\left(2\right)\Leftrightarrow a.0=4\left(ktm\right)\)

Vậy 1+b\(\ne0\)

Vậy (2)\(\Leftrightarrow a=\dfrac{4b^2}{1+b}\)

Thay vào (3)\(\Leftrightarrow\left(\dfrac{16b^2}{1+b}\right)=2b^2+2b\Leftrightarrow16b^4=\left(2b^2+2b\right)\left(b^2+2b+1\right)\Leftrightarrow16b^4=2b^4+4b^3+2b^2+2b^3+4b^2+2b\Leftrightarrow16b^4=2b^4+6b^3+6b^2+2b\Leftrightarrow14b^4-6b^3-6b^2-2b=0\Leftrightarrow7b^4-3b^3-3b^2-b=0\Leftrightarrow b\left(7b^3-3b^2-3b-1\right)=0\Leftrightarrow b\left(7b^3-7b^2+4b^2-4b+b-1\right)=0\Leftrightarrow b\left[7b^2\left(b-1\right)+4b\left(b-1\right)+\left(b-1\right)\right]=0\Leftrightarrow b\left(b-1\right)\left(7b^2+4b+1\right)=0\)(*)

Vì 7b2+4b+1>0

(*)\(\Leftrightarrow\)\(\left[{}\begin{matrix}b=0\\b=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=0\\a=2\end{matrix}\right.\)

TH1:a=0;b=0\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y=0\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

TH2:a=2;b=1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy (x;y)={(0;0);(1;1)}