\(\left\{{}\begin{matrix}2x^2+y^2-3xy=x-y\\2x^2-y^2=1\end{matrix}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2018

Biến đổi pt đầu:

\(2x^2-2xy-xy+y^2-\left(x-y\right)=0\Leftrightarrow2x\left(x-y\right)-y\left(x-y\right)-\left(x-y\right)=0\)\(\Leftrightarrow\left(x-y\right)\left(2x-y-1\right)=0\Rightarrow\left[{}\begin{matrix}x-y=0\\2x-y-1=0\end{matrix}\right.\)

Nếu x-y=0 hay x=y, thay vào pt sau:

\(2x^2-y^2=1\Leftrightarrow2x^2-x^2=1\Rightarrow\left[{}\begin{matrix}x=1;y=1\\x=-1;y=-1\end{matrix}\right.\)

Nếu \(2x-y-1=0\Leftrightarrow y=2x-1\) thay vào pt sau ta được:

\(2x^2-\left(2x-1\right)^2=1\Leftrightarrow-2x^2+4x-2=0\Rightarrow x=1;y=1\)

Vậy hệ đã cho có 2 cặp nghiệm: {x;y}={-1;-1} hoặc {x;y}={1;1}

11 tháng 11 2018

Bạn ơi ! Đề bài đâu ạ ! Có mỗi chữ giải hệ phương trình à !

29 tháng 11 2019

ko có đề bài à

30 tháng 11 2020

hello bạn

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Lời giải:
Lấy PT(1) cộng PT(2) thu được:

\(2x^3-x^2-2xy-3xy^2-y^2-y^3-1=0\)

\(\Leftrightarrow (2x^3-3xy^2-y^3)-(x^2+2xy+y^2)-1=0\)

\(\Leftrightarrow [2x^2(x+y)-2xy(x+y)-y^2(x+y)]-(x+y)^2-1=0\)

\(\Leftrightarrow (2x^2-2xy-y^2)(x+y)-(x+y)^2-1=0\)

\(\Leftrightarrow 2(x+y)-(x+y)^2-1=0\)

\(\Leftrightarrow -(x+y-1)^2=0\Rightarrow x+y=1\Rightarrow y=1-x\)

Thay vào PT(1) ta có:

\(2x^2-2x(1-x)-(1-x)^2=2\)

\(\Leftrightarrow 3x^2-3=0\Rightarrow x=\pm 1\)

\(x=1\Rightarrow y=0; x=-1\Rightarrow y=2\) (thỏa mãn)

Vậy $(x,y)=(1,0); (-1,2)$

27 tháng 2 2018

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y