Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Từ phương trình của 2 hệ ta suy ra x,y >=0. Xét phương trình
\(x^3+y^3+7\left(x+y\right)xy=8xy\sqrt{2\left(x^2+y^2\right)}\)
\(x^3+xy+y^3+7\left(x+y\right)=\left(x+y\right)\left(x^2+y^2+6xy\right)=\left(x+y\right)\left[\left(x+y\right)^2+4xy\right]\)
Theo bất đằng thức Cô Si ta có:
\(\left(x+y\right)^2+4xy\ge2\sqrt{\left(x+y\right)^2\cdot4xy}\). Ta có:
\(\left(x+y\right)^2=\left(x^2+y^2\right)+2xy\ge2\sqrt{\left(x^2+y^2\right)\cdot2xy}\)
\(\Rightarrow x^3+y^3+7\left(x+y\right)xy\ge8xy\sqrt{2\left(x^2+y^2\right)}\)
Dấu "=" xảy ra khi và chỉ khi x=y
Thay vào phương trình (2) ta thu được
\(\sqrt{x}-\sqrt{2x-3}-6=6-2x\)
\(\Leftrightarrow\sqrt{2x-3}-\sqrt{x}=2\left(x-3\right)\)
\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Rightarrow\orbr{\begin{cases}x=3\\\sqrt{2x-3}+\sqrt{x}=\frac{1}{2}\end{cases}}\)
Do \(x\ge\frac{3}{2}\)nên phương trình vô nghiệm
Hệ phương trình có nghiệm x=y=3
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(\hept{\begin{cases}x+\sqrt{7}y=-2\sqrt{3}\\-2x-2\sqrt{7}y=\sqrt{11}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+2\sqrt{7}y=-4\sqrt{3}\left(1\right)\\-2x-2\sqrt{7}y=\sqrt{11}\left(2\right)\end{cases}}\)
Lấy ( 1 ) + ( 2 ) ta được : \(0x+0y=-4\sqrt{3}+\sqrt{11}\)( vô lý )
Vậy HPT vô nghiệm