Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ pt(1) ta có được (x - 2y)(x - y - 2)=0
với x=2y thì thay vào ta được ( 2y^2 + y - 2)(4y^2 - 2y - 5)=0
với x - y =2 thì ta có (x^2 - 5)^2 = 9
phần còn lại tự làm vậy
mình giải khác @Aliba -@Aliba phân tích thành nhân tử. Mình làm bình thường nhân phân phối
\(\left(1\right)\Leftrightarrow x^2-\left(3y+2\right)x+2y^2+4y=0\)coi như hàm bậc 2 với x giải bình thường
\(\Delta\left(x\right)=\left(3y+2\right)^2-4\left(2y^2+4y\right)=\left(y-2\right)^2\) nhận phân phối ra giản ước là xong
\(\orbr{\begin{cases}x=\frac{3y+2-\left(y-2\right)}{2}=y+2\\x=\frac{3y+2+\left(y-2\right)}{2}=2y\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=x-2\\y=\frac{x}{2}\end{cases}}\) thấy y theo x không dúng x thấy y vào (2)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\\\left(x^2-5\right)=2x-2.\frac{x}{2}+5\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=9\left(3\right)\\\left(x^2-5\right)^2=\left(x+5\right)\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}x_{1,2}=+-\sqrt{2}\\x_{3,4}=+-2\sqrt{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y_{1,2}=+-\sqrt{2}-2\\y_{3,4}=+-2\sqrt{2}-2\end{cases}}\)
\(\left(4\right)\Leftrightarrow x^4-10x^2-x+20=0\)\(\Leftrightarrow\left(x^2-ax+b\right)\left(x^2+ax+c\right)\)đồng nhất hệ số \(\hept{\begin{cases}a=1\\b=-5\\c=-4\end{cases}}\)
\(\left(4\right)\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)
\(\hept{\begin{cases}x^2-x-5=0\\x^2+x-4=0\end{cases}}\)\(\orbr{\begin{cases}\Delta=21\\\Delta=17\end{cases}}\)
\(\orbr{\begin{cases}x_{5,6}=\frac{1+-\sqrt{21}}{2}\\x_{7,8}=\frac{-1+-\sqrt{17}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y_{5,6}=\frac{1+-\sqrt{21}}{4}\\y_{7,8}=\frac{-1+-\sqrt{17}}{4}\end{cases}}\)
\(\hept{\begin{cases}x^2+2y^2-3xy-2x+4y=0\left(1\right)\\\left(x^2-5\right)^2=2x-2y+5\left(2\right)\end{cases}}\)
Xét \(\left(1\right)\Leftrightarrow\left(x^2-2xy\right)+\left(2y^2-xy\right)+\left(-2x+4y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x-y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=2+y\end{cases}}\)
Thế x = 2y vào (2) ta được
\(\left(4y^2-5\right)^2=4y-2y+5\)
\(\Leftrightarrow16y^4-40y^2-2y+20=0\)
\(\Leftrightarrow8y^4-20y^2-y+10=0\)
\(\Leftrightarrow\left(8y^4+4y^3-8y^2\right)+\left(-4y^3-2y^2+4y\right)+\left(-10y^2-5y+10\right)=0\)
\(\Leftrightarrow\left(2y^2+y-2\right)\left(4y^2-2y-5\right)=0\)
Tới đây thì đơn giản rồi. Cái còn lại làm tương tự
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
x + y - xy = 1
=> x + y - xy - 1 = 0
=> (x - 1) + y(1 - x) = 0
=> (y - 1)(1 - x) = 0
=> \(\orbr{\begin{cases}y=1\\x=1\end{cases}}\)
Nếu x = 1
Khi đó x2 + y2 = 5
<=> 12 + y2 = 5
=> y2 = 4
=> y = \(\pm\)2
Nếu y = 1
=> x2 + y2 = 5
=> x2 + 12 = 5
=> x2 = 4
=> x = \(\pm\)2
Vậy các cặp (x;y) thỏa mãn là (1;2) ; (1;-2) ; (2;1) ; (-2;1)
\(\hept{\begin{cases}x^2+y^2=2\left(1\right)\\xy=1\left(2\right)\end{cases}}\)
Ta thấy x = 0, y = 0 không phải là nghiệm của hệ pt
Từ pt (2) => \(x=\frac{1}{y}\)thế vào pt (1) được
\(\frac{1}{y^2}+y^2=2\Leftrightarrow y^4-2y^2+1=0\)
\(\Leftrightarrow y^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy nghiệm của hệ là (x, y) = (1, 1; - 1, - 1)
Cách khác :Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hệ thành:
\(\hept{\begin{cases}S^2-P=2\\P=1\end{cases}}\)\(\Leftrightarrow S^2=3\Leftrightarrow S=\sqrt{3}\)
Như vậy ta có hệ ban đầu là \(\hept{\begin{cases}x+y=\sqrt{3}\\xy=1\end{cases}}\)
r` tới đây thay vào