Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
xem lại dấu ở PT thứ 2
ĐK : ...
\(\hept{\begin{cases}2+6y=\frac{x}{y}-\sqrt{x-2y}\left(1\right)\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\left(2\right)\end{cases}}\)
Ta có : ( 1 ) \(\Leftrightarrow2y+6y^2=x-y\sqrt{x-2y}\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{x-2y}}{y}\right)^2-\frac{\sqrt{x-2y}}{y}-6=0\Leftrightarrow\orbr{\begin{cases}\frac{\sqrt{x-2y}}{y}=3\\\frac{\sqrt{x-2y}}{y}=-2\end{cases}}\)
-Với \(\frac{\sqrt{x-2y}}{y}=3\Rightarrow\sqrt{x-2y}=3y\). Thay vào ( 2 ), ta có :
\(\sqrt{x+3y}=x+3y-2\Rightarrow\left(x+3y\right)-\sqrt{x+3y}-2=0\Rightarrow\orbr{\begin{cases}\sqrt{x+3y}=2\\\sqrt{x+3y}=-1\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+3y=4\\\sqrt{x-2y}=3y\end{cases}}\Leftrightarrow....\)
-Với \(\frac{\sqrt{x-2y}}{y}=-2\Rightarrow\sqrt{x-2y}=-2y\Leftrightarrow\hept{\begin{cases}\sqrt{x-2y}=x+3y-2\\\sqrt{x-2y}=-2y\end{cases}\Leftrightarrow....}\)
Vậy ....
\(\hept{\begin{cases}x^4+y^2-4x^2-6y+9=0\\x^2y+x^2+2y-22=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2-2\right)^2+\left(y-3\right)^2=4\\\left(y-3\right)\left(x^2-2\right)+4\left(x^2-2\right)+4\left(y-3\right)=8\end{cases}}\)
Đặt \(\hept{\begin{cases}x^2-2=a\\y-3=b\end{cases}}\) thì ta có
\(\hept{\begin{cases}a^2+b^2=4\\ab+4\left(a+b\right)=8\end{cases}}\)
Tới đây thì quá đơn giản rồi nhé.
\(2x+6y=\frac{x}{y}-\sqrt{x-2y}\)
\(\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)
Đến đây ta có thể biểu diễn đại lượng \(\sqrt{x-2y}\)bởi các biểu thức đơn giản hơn bài toán đã gần như được hoàn thành. Thật vậy,
- Nếu \(\sqrt{x-2y}=-2y\)(*) thì từ pt thứ 2 ta có:
\(\sqrt{x-2y}=x+3y-2\Leftrightarrow-2y=x+3y-2\Leftrightarrow x=2-5y\)
Tiếp tục thay vào (*) ta có: \(\sqrt{2-7y}=-2y\)
Giải pt này kết hợp với điều kiện ta có nghiệm (x;y)=(12;-2)
- Nếu \(\sqrt{x-2y}=3y\)(**) thì từ pt hai ta có
\(\sqrt{x+3y}=x+3y-2\Leftrightarrow\left(\sqrt{x+3y}-2\right)\left(\sqrt{x+3y}+1\right)=0\)
\(\Leftrightarrow x+3y=4\). Thay vào (**) ta được \(\sqrt{4-5y}=3y\)
Tiến hành giải và so sanh điều kiện ta có nghiệm \(\left(x;y\right)=\left(\frac{8}{3};\frac{4}{9}\right)\)
Vậy hệ pt có 2 nghiệm (x;y)=(12;-2); \(\left(\frac{8}{3};\frac{4}{9}\right)\)
KHÓ QUÁ
x2-3xy+x=2y-2y2
<=>x2-3xy+2y2=2y-x
<=>(x-2y)(x-y)=2y-x
<=>(x-2y)(x-y+1)=0
đến đây thay vào pt 2 là ra