\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{cases...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Hi chị!! Chị hãy lấy pt trên trừ phương trình dưới thì sẽ mất đc căn 2x+y =>>x=y=-2 có gì sai mong chị và mn thông cảm ạ

21 tháng 3 2016

Điều kiện\(\begin{cases}7x+y\ge0\\2x+y\ge0\end{cases}\); Đặt \(\begin{cases}u=\sqrt{7x+y}\ge0\\v=\sqrt{2x+y}\ge0\end{cases}\)\(\Rightarrow\)\(\begin{cases}u^2=7x+y\\v^2=2x+y\end{cases}\)\(\Rightarrow\)\(x=\frac{u^2-v^2}{5}\)\(y=\frac{7v^2-2u^2}{5}\)

HPT trở thành:     \(\begin{cases}u+v=5\\u^2-v^2-7v^2+2u^2+5v=5\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}u+v=5\\3u^2-8v^2+5v-5=0\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}u=5-v\\3\left(5-v\right)^2-8v^2+5v-5=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\-5v^2-25v+70=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\v^2+5v-14=0\left(\text{*}\right)\end{cases}\)

(*) \(\Leftrightarrow v=2\) (nhận)  hoặc  \(v=-7\) (loại) ; nên  HPT trên  \(\Leftrightarrow\) \(\begin{cases}u=3\\v=2\end{cases}\)

Do đó HPT đã cho trở thành \(\begin{cases}7x+y=9\\2x+y=4\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=1\\y=2\end{cases}\) (phù hợp)

5 tháng 1 2020

\(\text{Condition}:x,y\ge0\)

\(\hept{\begin{cases}x^2+2x=4-\sqrt{y}\left(M_1\right)\\y^2+2y=4-\sqrt{x}\left(M_2\right)\end{cases}}\)

\(\left(M_1\right)-\left(M_2\right)\Leftrightarrow\left(x^2-y^2\right)+2\left(x-y\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)+1=0\left(M_3\right)\end{cases}}\)

x=0 khong phai nghiem PT\(\Rightarrow M_3\)(fail)

Thay x=y vao 

:D

8 tháng 10 2020

Ta có: \(\sqrt{8x-y+5}+\sqrt{x+y-1}=3\sqrt{x}+2\)

\(\Leftrightarrow8x-y+5+x+y-1+2\sqrt{\left(8x-y+5\right)\left(x+y-1\right)}=9x+12\sqrt{x}+4\)

\(\Leftrightarrow9x+4+2\sqrt{8x^2-y^2+7xy-3x+6y-5}=9x+4+12\sqrt{x}\)

\(\Leftrightarrow\sqrt{8x^2-y^2+7xy-3x+6y-5}=6\sqrt{x}\)

\(\Leftrightarrow8x^2-y^2+7xy-3x+6y-5=36x\)

\(\Leftrightarrow8x^2-y^2+7xy-39x+6y-5=0\)

\(\Leftrightarrow\left(8x^2+8xy-40x\right)-y^2-xy-5+x+6y=0\)

\(\Leftrightarrow8x\left(x+y-5\right)-\left(y^2+xy-5y\right)+\left(x+y-5\right)=0\)

\(\Leftrightarrow\left(x+y-5\right)\left(8x-y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5-x\\y=8x+1\end{cases}}\)

Thay vào pt dưới ta có:

\(\sqrt{xy}+\frac{1}{\sqrt{x}}=\sqrt{8x-y+5}\left(1\right)\)

+) với y=5-x (1) thành:

\(\sqrt{x\left(5-x\right)}+\frac{1}{\sqrt{x}}=\sqrt{8x-\left(5-x\right)+5}\)

\(\Leftrightarrow\sqrt{5x-x^2}+\frac{1}{\sqrt{x}}=\sqrt{9x}\)\(\Leftrightarrow\sqrt{5x^2-x^3}+1=3x\)\(\Leftrightarrow\sqrt{5x^2-x^3}=3x-1\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\5x^2-x^3=9x^2-6x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x^3+4x^2-6x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{3}\\x=1\left(tm\right)\end{cases}}}\)

Với x=1=>y=4

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

18 tháng 4 2016

\(\begin{cases}y^2-x\sqrt{\frac{y^2+2}{x}}=2x-2\left(1\right)\\\sqrt{y^2+1}+\sqrt[3]{2x-1}=1\left(2\right)\end{cases}\)

Điều kiện \(x>0\)

Chia cả 2 vế của phương trình (1) cho \(x\) ta được :

\(\frac{y^2+2}{x}-\sqrt{\frac{y^2+2}{x}}-2=0\)

\(\Leftrightarrow\begin{cases}\sqrt{\frac{y^2+2}{x}=-1}\\\sqrt{\frac{y^2+2}{x}=2}\end{cases}\) \(\Leftrightarrow\frac{y^2+2}{x}=4\)

                             \(\Leftrightarrow y^2=4x+2\)

Thế vào phương trình (2) ta được : \(\sqrt{4x-1}+\sqrt[3]{2x-1}=1\)

Đặt \(\sqrt{4x-1}=u,\left(u\ge0\right),\sqrt[3]{2x-1}=v\) ta có hệ : \(\begin{cases}u+v=1\\u^2-2v^3=1\end{cases}\)

Giải hệ ta được \(u=1;v=0\Rightarrow x=\frac{1}{2};y=0\)

Vậy nghiệm của hệ phương trình là : \(x=\frac{1}{2};y=0\)