\(\hept{\begin{cases}\sqrt{3+x^2}+2\sqrt{x+3}=5+\sqrt{y+3}\\\sqrt{3+y^2}+2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

Ta có: \(\sqrt{8x-y+5}+\sqrt{x+y-1}=3\sqrt{x}+2\)

\(\Leftrightarrow8x-y+5+x+y-1+2\sqrt{\left(8x-y+5\right)\left(x+y-1\right)}=9x+12\sqrt{x}+4\)

\(\Leftrightarrow9x+4+2\sqrt{8x^2-y^2+7xy-3x+6y-5}=9x+4+12\sqrt{x}\)

\(\Leftrightarrow\sqrt{8x^2-y^2+7xy-3x+6y-5}=6\sqrt{x}\)

\(\Leftrightarrow8x^2-y^2+7xy-3x+6y-5=36x\)

\(\Leftrightarrow8x^2-y^2+7xy-39x+6y-5=0\)

\(\Leftrightarrow\left(8x^2+8xy-40x\right)-y^2-xy-5+x+6y=0\)

\(\Leftrightarrow8x\left(x+y-5\right)-\left(y^2+xy-5y\right)+\left(x+y-5\right)=0\)

\(\Leftrightarrow\left(x+y-5\right)\left(8x-y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5-x\\y=8x+1\end{cases}}\)

Thay vào pt dưới ta có:

\(\sqrt{xy}+\frac{1}{\sqrt{x}}=\sqrt{8x-y+5}\left(1\right)\)

+) với y=5-x (1) thành:

\(\sqrt{x\left(5-x\right)}+\frac{1}{\sqrt{x}}=\sqrt{8x-\left(5-x\right)+5}\)

\(\Leftrightarrow\sqrt{5x-x^2}+\frac{1}{\sqrt{x}}=\sqrt{9x}\)\(\Leftrightarrow\sqrt{5x^2-x^3}+1=3x\)\(\Leftrightarrow\sqrt{5x^2-x^3}=3x-1\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\5x^2-x^3=9x^2-6x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x^3+4x^2-6x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{3}\\x=1\left(tm\right)\end{cases}}}\)

Với x=1=>y=4

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

27 tháng 6 2019

1,\(x^2-2y^2-xy=0\)

<=> \(\left(x-2y\right)\left(x+y\right)=0\)

<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)

Sau đó bạn thế vào PT dưới rồi tính 

27 tháng 6 2019

3.  ĐKXĐ  \(x\le1\)\(x+2y+3\ge0\)

.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)

<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)

<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)

Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\)\(x\le1\)nên \(-y^2+x+2y-4< 0\)

=> \(x=2y\)

Thế vào Pt còn lại ta được

\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)

<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)

<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )

Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)

7 tháng 4 2016

\(\begin{cases}x^2\left(x-3\right)-y\sqrt{y-3}=-2\left(1\right)\\3\sqrt{x-2}=\sqrt{y\left(y+8\right)}\left(2\right)\end{cases}\) Điều kiện \(x\ge2;y\ge0\) (*)

Khi đó (1) \(\Leftrightarrow x^3-3x^2+2=y\sqrt{y+3}\)

               \(\Leftrightarrow\left(x-1\right)^3-3\left(x-1\right)=\left(\sqrt{y+3}\right)^3-3\sqrt{y+3}\left(3\right)\)

Xét hàm số \(f\left(t\right)=t^3-3t\) trên \(\left(1;+\infty\right)\)

Ta có \(f\left(t\right)=3t^2-3=3\left(t^2-1\right)\ge0\) với mọi \(t\ge1\) suy ra hàm số đồng biến  trên  \(\left(1;+\infty\right)\)

Nên (3) \(\Leftrightarrow x-1=\sqrt{y+3}\Leftrightarrow x-2=\sqrt{y+3}-1\left(4\right)\)
(2) \(\Leftrightarrow9\left(x-2\right)=y^2+8\left(5\right)\)
Thay (4) vào (5) được \(9\left(\sqrt{y+3}-1\right)=y^2+8y\) (*)
\(\Leftrightarrow9\left(\sqrt{y+3}-2\right)=y^2+8y-9\Leftrightarrow\frac{9\left(y-1\right)}{\sqrt{y+3}+2}-\left(y-1\right)\left(y+9\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{9}{\sqrt{y+3}+2}-y-9\right)=0\Leftrightarrow y=1\)
Với \(y\ge0\) thì \(\frac{9}{\sqrt{y+3}+2}-y-9<0\) vậy (*) có nghiệm y=1, khi đó x=3
Kết luận : (x;y)=(3;1)