K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

 x = 4

 y = 9

25 tháng 1 2019

\(\hept{\begin{cases}3x+2y=30\left(1\right)\\2x+3y=35\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta có: 

\(3x+2y-2x-3y=30-35\)

\(\Leftrightarrow x-y=-5\)(3)

Lấy (2) + (1) ta có: 

\(2x+3y+3x+2y=30+35\)

\(\Leftrightarrow5\left(x+y\right)=65\)

\(\Leftrightarrow x+y=13\)(4)

Từ (3) và (4) ta có:

\(\hept{\begin{cases}x-y=-5\\x+y=13\end{cases}}\)

Đến đây bạn tự làm nốt nhé~

19 tháng 4 2019

\(\hept{\begin{cases}\frac{2x-3y}{2y-5}=\frac{3x+1}{3y-4}\left(1\right)\\2\left(x-3\right)-3\left(y+2\right)=-16\left(2\right)\end{cases}}\)

Nhân chéo và chuyển vế phương trình (1) và nhân phân phối, chuyển vế phương trình (2), ta được:

\(\hept{\begin{cases}7x-11y=-17\\2x-3y=-4\end{cases}}\)

<=>\(\hept{\begin{cases}x=7\\y=6\end{cases}}\)

16 tháng 1 2018

\(\hept{\begin{cases}2x=\sqrt{y+3}\left(1\right)\\2y=\sqrt{z+3}\left(2\right)\\2z=\sqrt{x+3}\left(3\right)\end{cases}}\)(*)

Do \(\hept{\begin{cases}\sqrt{y+3}\ge0\\\sqrt{z+3}\ge0\\\sqrt{x+3}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge0\\2y\ge0\\2z\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}}\)

Do 2 vế của các phương trình (1)(2)(3) không âm, bình phương 2 vế của mỗi phương trình ta được hệ phương trình:

\(\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=z+3\\\left(2z\right)^2=x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2=x+y+z+9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2-x-y-z-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left[\left(2x\right)^2-2.2x.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2z\right)^2-2.2z.\frac{1}{4}+\frac{1}{16}\right]+\frac{141}{16}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}=0\left(4\right)\end{cases}}\)

Do \(\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}>0\)

nên phương trình (4) vô nghiệm

=> Phương trình (*) vô nghiệm

8 tháng 4 2018

bạn trên giải sai rồi 

24 tháng 5 2019

tôi mới lớp5

24 tháng 5 2019

i am 11 years old,do you know

Bài làm

Thep phương pháp đưa về đồng bậc, có:

\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)

\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)

\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)

\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0

\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y

Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )

<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.

~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~

2 tháng 12 2019

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

18 tháng 5 2020

JKILO