\(\hept{\begin{cases}2x^2+y^2=10\\x^2-2y^2=5\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Có: \(\hept{\begin{cases}2x^2+y^2=10\\x^2-2y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}2x^2+y^2=10\\2x^2-4y^2=10\end{cases}}}\)

\(\left(2x^2+y^2\right)-\left(2x^2-4y^2\right)=0\)

\(\Leftrightarrow5y^2=0\)

\(\Leftrightarrow y=0\)

Từ đó bn giải x

a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=7\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=-3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\2x-8y=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=-22\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=10+4y=10-8=2\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=-4\\5x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3x+2=-15+2=-13\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=7\\2x-4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=21\\x=-7+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-1\end{matrix}\right.\)

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

Dùng cái đầu đi ạ

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2