\(\hept{\begin{cases}2x+2\left(x^2-y^2\right)=7\\2\left(x^2+y^2\right)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Giao lưu:

(1)+(2)\(4x^2+2x=12\Leftrightarrow z^2+z-12=0\Rightarrow\orbr{\begin{cases}z=-4\Rightarrow x=-2\\z=3\Rightarrow x=\frac{3}{2}\end{cases}}\\ \)

thế vào (2) \(\orbr{\begin{cases}y^2=\frac{5}{2}-4\left(loai\right)\\y^2=\frac{5}{2}-\frac{9}{4}=\frac{1}{4}\Rightarrow=+-\frac{1}{2}\end{cases}}\)

2 tháng 1 2017

help me

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

31 tháng 12 2017

2)trừ từng vế của 2 pt, ta có 

\(x^2y+y^2x-4x-4y-x^2+3xy+4y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+4\right)\left(y-1\right)=0\) (cái này bạn tự phân tích nhá )

đến đây thì dễ rồi 

^_^