\(\begin{cases}3xy\left(1+\sqrt{9y^2+1}\right)=\frac{1}{\sqrt{x+1}-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

 

\(\begin{cases}3xy\left(1+\sqrt{9y^2+1}\right)=\frac{1}{\sqrt{x+1}-\sqrt{x}}\left(1\right)\\x^3\left(9y^2+1\right)+4\left(x^2+1\right)\sqrt{x}=10\left(2\right)\end{cases}\)

Điều kiện \(x\ge0\)

Nếu x=0, hệ phương trình không tồn tại

Vậy xét x>0

\(\Leftrightarrow3y+3y\sqrt{9y^2+1}=\frac{\sqrt{x+1}+\sqrt{x}}{x}\)

\(\Leftrightarrow3y+3y\sqrt{\left(3y\right)^2+1}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\sqrt{\left(\frac{1}{\sqrt{x}}\right)^2+1}\) (3)

Từ (1) và x>0 ta có y>0. Xét hàm số \(f\left(t\right)=t+t.\sqrt{t^2+1},t>0\)

Ta có \(f'\left(t\right)=1+\sqrt{t^2+1}+\frac{t^2}{\sqrt{t^2+1}}>0\). Suy ra \(f\left(t\right)\) luôn đồng biến trên \(\left(0;+\infty\right)\)

Phương trình (3) \(\Leftrightarrow f\left(3y\right)=f\left(\frac{1}{\sqrt{x}}\right)\Leftrightarrow3y=\frac{1}{\sqrt{x}}\)

Thế vào phương trình (2) ta được : \(x^3+x^2+4\left(x^2+1\right)\sqrt{x}=10\)

Đặt \(g\left(x\right)=x^3+x^2+4\left(x^2+1\right)\sqrt{x}-10,x>0\)

Ta có \(g'\left(x\right)>0\) với \(x>0\) \(\Rightarrow g\left(x\right)\) là hàm số đồng biến trên khoảng (\(0;+\infty\))

Ta có g(1)=0

vậy phương trình g(x) = 0 có nghiệm duy nhất x = 1

Với x=1 => \(y=\frac{1}{3}\)

Vậy kết luận : Hệ có nghiệm duy nhất (\(1;\frac{1}{3}\))

 

6 tháng 8 2016

bạn đăng 1 lúc nhiều v

k ai dám làm đâu

5 tháng 4 2016

\(\begin{cases}27x^3+3x+\left(9y-7\right)\sqrt{6-9y}=0\left(1\right)\\\frac{x^2}{3}+y^2+\sqrt{2-3x}-\frac{109}{81}=0\left(2\right)\end{cases}\)

Với điều kiện \(x\le\frac{2}{3};y\le\frac{2}{3}\) (1) tương đương với : \(\left(9x^2+1\right)3x=\left(6-9y+1\right)\sqrt{6-9y}\)

Đặt \(u=3x,v=\sqrt{6-9y}\) ta có \(\left(u^2+1\right)u=\left(v^2+1\right)v\)

Xét hàm số : \(f\left(t\right)=\left(t^2+1\right)t\) có \(f'\left(t\right)=3t^2+1>0\) nên hàm số luôn đồng biến trên R

Suy ra \(u=v\Leftrightarrow3x=\sqrt{6-9y}\Leftrightarrow\begin{cases}x\ge0\\y=\frac{2}{3}-x^2\left(3\right)\end{cases}\)

Thế (3) vào (2) ta được \(\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}=0\left(4\right)\)

Nhận xét \(x=0;x=\frac{2}{3}\) không phải là nghiệm của (4)

Xét hàm số : \(g\left(x\right)=\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}\)

Ta có \(g'\left(x\right)=2x\left(2x-1\right)-\frac{3}{2\sqrt{2-3x}}<0\), mọi \(x\in\left(0;\frac{2}{3}\right)\)

Nên hàm số g(x) nghịch biến trên \(\left(0;\frac{2}{3}\right)\)

Dễ thấy \(x=\frac{1}{3}\) là nghiệm của (1), suy ra \(y=\frac{5}{9}\) nên hệ có nghiệm duy nhất là \(\left(\frac{1}{3};\frac{5}{9}\right)\)

11 tháng 4 2016

Điều kiện : \(y\ge-1\)

Xét (1) : \(\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\)

Đặt \(\sqrt{x^2+2y^2}=t\left(t\ge0\right)\)

Phương trình (1) trở thành :

\(t^2+\left(1-y\right)t-x^2-2y^2-x-2y-3xy=0\)

\(\Delta=\left(1-y\right)^2+4\left(x^2+2y^2+x+2y+3xy\right)=\left(2x+3y+1\right)^2\)

\(\Rightarrow\begin{cases}t=-x-y-1\\t=x+2y\end{cases}\) \(\Leftrightarrow\begin{cases}\sqrt{x^2+2y^2}=-x-y-1\\\sqrt{x^2+2y^2}=x+2y\end{cases}\)

Với \(\sqrt{x^2+2y^2}=-x-y-1\) thay vào (2) ta có :

\(\sqrt{y+1}=3y+1\Leftrightarrow\begin{cases}y\ge-\frac{1}{3}\\9y^2+5y=0\end{cases}\)\(\Leftrightarrow y=0\)

\(\Rightarrow\sqrt{x^2}=-x-1\) (vô nghiệm)

Với \(\sqrt{x^2+2y^2}=x+2y\), ta có hệ \(\begin{cases}\sqrt{y+1}=-2x\\\sqrt{x^2+2y^2}=x+2y\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{-1-\sqrt{5}}{4}\\y=\frac{1+\sqrt{5}}{2}\end{cases}\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\frac{-1-\sqrt{5}}{4};\frac{1+\sqrt{5}}{2}\right)\)

8 tháng 10 2017

F

19 tháng 6 2016

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

4 tháng 9 2016

2)ĐK:x\(\ge\frac{1}{2}\)

pt(2)\(\Leftrightarrow\left(y+1\right)^3\)+(y+1)=\(\left(2x\right)^3\)+2x

Xét hàm số: f(t)=\(t^3\)+t

f'(t)=3\(t^2\)+1>0,\(\forall\)t

\(\Rightarrow\)hàm số liên tục và đồng biến trên R

\(\Rightarrow\)y+1=2x

Thay y=2x-1 vào pt(1) ta đc:

\(x^2\)-2x=2\(\sqrt{2x-1}\)

\(\Leftrightarrow\left(x^2-4x+2\right)\left(1+\frac{4}{2x-2+2\sqrt{2x-1}}\right)=0\)

\(\Leftrightarrow x^2\)-4x+2=0(do(...)>0)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2+\sqrt{2}\Rightarrow y=3+2\sqrt{2}\\x=2-\sqrt{2}\Rightarrow y=3-2\sqrt{2}\end{array}\right.\)

5 tháng 9 2016

4)ĐK:\(y\ge\frac{2}{3}\)

pt(1)\(\Leftrightarrow x-\sqrt{3y-2}=\sqrt{3y\left(3y-2\right)}-x\sqrt{x^2+2}\)

\(\Leftrightarrow x\left(\sqrt{x^2+2}+1\right)=\sqrt{3y-2}\left(\sqrt{3y}+1\right)\)

Xét hàm số:\(f\left(t\right)=t\left(\sqrt{t^2+2}+1\right)\)

 

\(\Rightarrow\)hàm số liên tục và đồng biến trên R

\(\Rightarrow x=\sqrt{3y-2}\)

Thay vào pt(2) ta đc:\(\sqrt{3y-2}+y+\sqrt{y+3}=4\)

\(\Leftrightarrow\sqrt{3y-2}-1+\sqrt{y+3}-2+y-1=0\)

\(\Leftrightarrow\left(y-1\right)\left(\frac{3}{\sqrt{3y-2}+1}+\frac{1}{\sqrt{y+3}+2}+1\right)=0\)

\(\Leftrightarrow y=1\Rightarrow x=1\)(do...)>0)

KL:...