\(\begin{cases}3\sqrt[3]{3x^2+y+1}=\left(x-1\right)^3-y\\x^3-y-2x^2+2x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

\(x^3+y^3=\left(x^2+y^2\right)\sqrt{x^2-xy+y^2}\)

\(\Leftrightarrow\left(x^3+y^3\right)^2=\left(x^2+y^2\right)^2.\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)^2.\left(x^2-xy+y^2\right)^2=\left(x^2+y^2\right)^2.\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)^2.\left(x^2-xy+y^2\right)=\left(x^2+y^2\right)^2\)

\(\Leftrightarrow\left(x^3+y^3\right)\left(x+y\right)=\left(x^2+y^2\right)^2\)

\(\Leftrightarrow x^4+x^3y+xy^3+y^4=x^4+y^4+2x^2y^2\)

\(\Leftrightarrow x^3y+xy^3-2x^2y^2=0\)

\(\Leftrightarrow xy\left(x^2-2xy+y^2\right)=0\)

\(\Leftrightarrow\sqrt{4x-3}.\left(x-y\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{4x-3}=0\\\left(x-y\right)^2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}4x-3=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\x=y\end{cases}}\)

Xét trường hợp:

Với x=3/4

=>\(x=\frac{3}{4}\Leftrightarrow y.\frac{3}{4}=0\Leftrightarrow y=0\)

Với: \(x=y\)

Có: \(xy=\sqrt{4x-3}\Leftrightarrow x^2y^2=4x-3\Leftrightarrow x^4-4x+3=0\Leftrightarrow x\left(x^3-1\right)-3\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^2+2x+3\right)=0\)( vì x^2+2x+3 luôn dương. Tự c/m nhé )

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)\(\Leftrightarrow x=y=1\)

KL:.................................

19 tháng 4 2019

thanks anh ạ 

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

3 tháng 10 2020

\(_{\hept{2y^2}-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2\left(2\right)}}2x^4+3x^3+45x=27x^2\left(1\right)\)

ĐK: \(2y^2+1\ge1\)

Phương trình 2 tương đương:

\(\left(2y^2-x^2+1\right)^2=3y^4-4x^2+6x^2-2x^2y^2\)

\(\Leftrightarrow y^4+2x^2-2x^2y^2+x^{2+2}+1-2y^2=0\)

Các lập phương được cấu tạo từ \(x^2y^2\)nên :

\(\Leftrightarrow\left(y^4-2x^2y^2+y^4\right)-2\left(y^2-x^2\right)+1=0\)

Đảo chiều:

\(\Leftrightarrow\left(y^2-x^2-1\right)^2=0\)

\(\Leftrightarrow y^2=x^2+1\left(3\right)\)

Thế \(x^2+1=y^2\)vào phương trình (1) ta có :

\(2x^4+3x^3+45x=27\left(x^2+1\right)\)

\(\Leftrightarrow2x^4+3x^3-27x^2+45x-27=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)\left(2x^3+6x^2-18x+18\right)=0\)

Chuyển: \(x=\frac{3}{2}\Rightarrow y=\frac{\sqrt{13}}{2}\)

\(\Leftrightarrow[x=-\sqrt[3]{16-\sqrt[3]{4}}-1\Rightarrow y=\sqrt{\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)^2+1}\)