K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

\(b,\left\{{}\begin{matrix}2x+y=3\\x-y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x=10\\x-y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\\dfrac{10}{3}-y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=-\dfrac{11}{3}\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}2x-3y=6\\2x+y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-4y=3\\2x+y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-3}{4}\\2x-\dfrac{3}{4}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-3}{4}\\x=\dfrac{15}{8}\end{matrix}\right.\)

NV
17 tháng 1 2022

b.

\(\left\{{}\begin{matrix}2x+y=3\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=10\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\\dfrac{10}{3}-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=-\dfrac{11}{3}\end{matrix}\right.\)

Vậy...

c.

\(\left\{{}\begin{matrix}2x-3y=6\\2x+y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2x+3y=-6\\2x+y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4y=-3\\2x+y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{4}\\2x-\dfrac{3}{4}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{4}\\x=\dfrac{15}{8}\end{matrix}\right.\)

6 tháng 3 2022

a) A = \(\sum\limits^{50}_1\left(2x\right)-\sum\limits^{50}_1\left(2x-1\right)\) = 5050

b) B = \(\sum\limits^{2010}_1x^3\) = 4084663313000

6 tháng 12 2016

mình giải khác @Aliba -@Aliba phân tích thành nhân tử. Mình làm bình thường nhân phân phối

\(\left(1\right)\Leftrightarrow x^2-\left(3y+2\right)x+2y^2+4y=0\)coi như hàm bậc 2 với x giải bình thường

\(\Delta\left(x\right)=\left(3y+2\right)^2-4\left(2y^2+4y\right)=\left(y-2\right)^2\) nhận phân phối ra giản ước là xong

\(\orbr{\begin{cases}x=\frac{3y+2-\left(y-2\right)}{2}=y+2\\x=\frac{3y+2+\left(y-2\right)}{2}=2y\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=x-2\\y=\frac{x}{2}\end{cases}}\) thấy y theo x không dúng x thấy y vào (2)

\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\\\left(x^2-5\right)=2x-2.\frac{x}{2}+5\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=9\left(3\right)\\\left(x^2-5\right)^2=\left(x+5\right)\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}x_{1,2}=+-\sqrt{2}\\x_{3,4}=+-2\sqrt{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y_{1,2}=+-\sqrt{2}-2\\y_{3,4}=+-2\sqrt{2}-2\end{cases}}\)

\(\left(4\right)\Leftrightarrow x^4-10x^2-x+20=0\)\(\Leftrightarrow\left(x^2-ax+b\right)\left(x^2+ax+c\right)\)đồng nhất hệ số \(\hept{\begin{cases}a=1\\b=-5\\c=-4\end{cases}}\)

\(\left(4\right)\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

\(\hept{\begin{cases}x^2-x-5=0\\x^2+x-4=0\end{cases}}\)\(\orbr{\begin{cases}\Delta=21\\\Delta=17\end{cases}}\)

\(\orbr{\begin{cases}x_{5,6}=\frac{1+-\sqrt{21}}{2}\\x_{7,8}=\frac{-1+-\sqrt{17}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y_{5,6}=\frac{1+-\sqrt{21}}{4}\\y_{7,8}=\frac{-1+-\sqrt{17}}{4}\end{cases}}\)

6 tháng 12 2016

\(\hept{\begin{cases}x^2+2y^2-3xy-2x+4y=0\left(1\right)\\\left(x^2-5\right)^2=2x-2y+5\left(2\right)\end{cases}}\)

Xét \(\left(1\right)\Leftrightarrow\left(x^2-2xy\right)+\left(2y^2-xy\right)+\left(-2x+4y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=2+y\end{cases}}\)

Thế x = 2y vào (2) ta được

\(\left(4y^2-5\right)^2=4y-2y+5\)

\(\Leftrightarrow16y^4-40y^2-2y+20=0\)

\(\Leftrightarrow8y^4-20y^2-y+10=0\)

\(\Leftrightarrow\left(8y^4+4y^3-8y^2\right)+\left(-4y^3-2y^2+4y\right)+\left(-10y^2-5y+10\right)=0\)

\(\Leftrightarrow\left(2y^2+y-2\right)\left(4y^2-2y-5\right)=0\)

Tới đây thì đơn giản rồi. Cái còn lại làm tương tự

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

14 tháng 10 2020

Giải bằng phương pháp hàm số tức là sử dụng đạo hàm để khảo sát đặc điểm của hàm số (tính đơn điệu, cực trị, ... ) bạn nhé.
Đặt f(x)=\(x^5+x^3-\sqrt{1-3x}+4\) với tập xác định \(D=(-\infty;\frac{1}{3}]\)
Xét đạo hàm f'(x) = \(5x^4+3x^2+\frac{3}{2\sqrt{1-3x}}>0\)\(\forall x\in D\)

Từ đó suy ra hàm số y=f(x) đồng biến trên tập xác định D của nó. Suy ra hàm số NẾU có nghiệm thì chỉ có duy nhất một nghiệm.
Mà ta lại nhẩm được f(-1)=0. Vậy phương trình có nghiệm duy nhất \(x=-1\)

1 tháng 8 2018

Mình sẽ k cho bạn nào nhanh nhất nhé <3

23 tháng 8 2019

\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)

\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)

1 tháng 8 2018

Đặt m = 1 / x - 3         và n = 1/y - 4 
Khi đó ta có hệ m + n = 5/3
4 x x - 3 x n = 3/2 
....Bạn tự giải tiếp nhé 

11 tháng 4 2023

đkxđ: \(\dfrac{x+3}{x-1}\ge0\)

Ptr ⇔\(\left(x-1\right)\left(x+3\right)+\dfrac{2\left(x-1\right)\sqrt{\left(x+3\right)\left(x-1\right)}}{x-1}=8\\ \Leftrightarrow\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}-8=0\) 

Đặt \(\sqrt{\left(x-1\right)\left(x+3\right)}=a\)      (a≥0)

Ptr ⇔ \(a^2+2a-8=0\) 

⇔a=2 (tm) hoặc a=-4 (loại)

\(\sqrt{\left(x-1\right)\left(x+3\right)}=2\)

\(x^2+2x-3=4\)

\(\Leftrightarrow x^2+2x-7=0\)

⇔ \(x=-1+2\sqrt{2}\)        (tm)

hoặc \(x=-1-2\sqrt{2}\) (tm)

Vậy...

23 tháng 10 2021

b: \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=-6\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=5-2x=5-12=-7\end{matrix}\right.\)

23 tháng 10 2023

\(tana=\sqrt{3}\)

=>\(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+3=4\)

=>\(cos^2a=\dfrac{1}{4}\)

=>\(cosa=\dfrac{1}{2}\)

=>\(sina=\dfrac{\sqrt{3}}{2}\)

\(A=\dfrac{sin^2a-cos^2a}{sina\cdot cosa}\)

\(=\dfrac{\dfrac{3}{4}-\dfrac{1}{4}}{\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{2}}=\dfrac{2}{4}:\dfrac{\sqrt{3}}{4}=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)