Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt m = 1 / x - 3 và n = 1/y - 4
Khi đó ta có hệ m + n = 5/3
4 x x - 3 x n = 3/2
....Bạn tự giải tiếp nhé
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x-1+2}{x-1}+\frac{3\left(y+2\right)-6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+\frac{2}{x-1}+3-\frac{6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x-1}-\frac{6}{y+2}=3\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\)
đặt \(\left\{{}\begin{matrix}a=\frac{1}{x-1}\\b=\frac{1}{y+2}\end{matrix}\right.\) ta có : \(\left\{{}\begin{matrix}2a-6b=3\\2a-5b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=6b+3\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{9}{2}\\b=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=\frac{9}{2}\\\frac{1}{y+2}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\frac{2}{9}\\y+2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{11}{9}\\y=-1\end{matrix}\right.\)
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
ĐKXĐ \(\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x-2}=a\\\frac{1}{y-1}=b\end{cases}\left(a;b\ne0\right)}\)
Hệ trở thành \(\hept{\begin{cases}a+b=2\\2a-3b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a+2b=4\\2a-3b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5b=3\\a+b=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{5}\\a=\frac{7}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2}=\frac{7}{5}\\\frac{1}{y-1}=\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=\frac{5}{7}\\y-1=\frac{5}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{19}{7}\\y=\frac{8}{3}\end{cases}}\left(TmDKXD\right)\)
b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)
pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)
Vậy nghiệm của hệ pt là(x;y)=(2;2)
Mình sẽ k cho bạn nào nhanh nhất nhé <3
\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)
\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)