K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

b) \(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\\left(x+1\right)^2+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+1\right)^2-6y=6\left(1\right)\\2\left(x-1\right)^2+6y=2\left(2\right)\end{matrix}\right.\)

Cộng theo vế 2 pt trên, ta có

\(3\left(x+1\right)^2+2\left(x-1\right)^2=8\)

\(\Leftrightarrow5x^2+2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-1\end{matrix}\right.\)

Từ đó dễ dàng tìm được y.

5 tháng 8 2017

a) \(\left\{{}\begin{matrix}\left(x+y\right)^2=50\left(1\right)\\x+5\left(y-1\right)=xy\left(2\right)\end{matrix}\right.\)

Ta viết lại pt (2)

\(x+5\left(y-1\right)=xy\)

\(\Leftrightarrow\left(x-xy\right)+5\left(y-1\right)=0\)

\(\Leftrightarrow x\left(1-y\right)-5\left(1-y\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(1-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)

- TH1: Thay x = 5 vào pt (1) tìm được \(\left[{}\begin{matrix}y=-5+5\sqrt{2}\\y=-5-5\sqrt{2}\end{matrix}\right.\)

- TH2: Thay y = 1 vào pt (1) tìm được \(\left[{}\begin{matrix}x=-1+5\sqrt{2}\\x=-1-5\sqrt{2}\end{matrix}\right.\)

26 tháng 5 2017

a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)

Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:

\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp 

ra \(x=8;y=-8\)

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

28 tháng 1 2017

ĐK:  y ≥ 1 3 x + 2 y ≥ 1 ⇔ x ≥ 1 − 2 y y ≥ 1 3

Xét  3 y − 1 + x + 2 y − 1 = 0 ⇔ x = y = 1 3

Thay vào (2) không thỏa mãn

Xét  3 y − 1 + x + 2 y − 1 ≠ 0 ⇔ x ≠ 1 3 y ≠ 1 3

(1) ⇔ y ( x   –   y ) = y − x 3 y − 1 + x + 2 y − 1

Với x = y, thay vào (2) ta được:

x 4 – 4 x 3 + 7 x 2 − 6 x + 2 = 0 ⇔ ( x – 1 ) 2   ( x 2 – 2 x + 2 ) = 0 ⇔ x   =   1

Khi đó: y = 1 (TM). Vậy nghiệm của hệ là (1; 1)

Nên x. y = 1

Đáp án:B

19 tháng 11 2017

bạn nhân chéo 2 vế của 2 pt ra hệ đồng bậc sau đó ptđttnt có nhân tử là x+y

6 tháng 4 2017

a) Điều kiện x ≥ 1; y ≥ 1.

Đặt Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9 (u, v ≥ 0).

Hệ phương trình trở thành:

Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm (2; 2).

b) Đặt ( x   –   1 ) 2   =   u , u ≥ 0.

Hệ phương trình trở thành:

Vậy hệ phương trình có hai nghiệm Giải bài 10 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 8 2021

các bn ơi giúp mình với