K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\x+y+2\left(x-y\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-y-3x+y=4-5\\3x-y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=-1\\y=3x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3\cdot\dfrac{-1}{2}-5=-\dfrac{3}{2}-5=-\dfrac{13}{2}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy+3x-3y-9=xy-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\3x-3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y-x+y=0-2\\x-y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0y=-2\\x-y=0\end{matrix}\right.\Leftrightarrow\left(x;y\right)\in\varnothing\)

16 tháng 9 2017

mình chẳng hiểu gì cả X_X

16 tháng 9 2017

Chả hiểu đây là dạng toán gì

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

17 tháng 6 2016

Trả lời nhanh nha các bn, mik đang cần gấp, cảm ơn nhiều.

17 tháng 6 2016

Kết hợp với giả thiết nêu ra ở đề bài, ta có vài biến đổi sau: 

\(\frac{x}{y^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}=-\frac{1}{y^2+y+1}\)  \(\left(1\right)\)

\(\frac{y}{x^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}=-\frac{1}{x^2+x+1}\)  \(\left(2\right)\)

Mặt khác, ta lại có: \(\left(x^2+x+1\right)\left(y^2+y+1\right)=x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\)

\(=x^2y^2+\left[x^2+xy\left(x+y\right)+xy+y^2\right]+\left(x+y\right)+1=x^2y^2+\left(x+y\right)^2+2=x^2y^2+3\)

Khi đó,  trừ đẳng thức  \(\left(1\right)\)  cho  đẳng thức  \(\left(2\right)\)  vế theo vế, ta được:

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}=\frac{\left(y-x\right)\left(x+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Vậy,  \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

31 tháng 7 2017

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a,b>0\right)\) thì có:

\(\hept{\begin{cases}a^3+b^3=2ab\\a+b=2\end{cases}}\). Khi đó xét pt(1)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-2\right)=0\)

*)Xét \(a+b=0\Rightarrow a=-b\Rightarrow a=b=0\) (loại)

*)Xét \(a^2-ab+b^2-2=0\Rightarrow a^2+b^2-ab=2\)

Do \(a,b\ge0\) nên xài AM-GM ta có:

\(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab=2\)

Và \(ab\le\frac{\left(a+b\right)^2}{4}=2\) Xảy ra khi \(a=b=1\) (thỏa)

Vậy nghiệm hpt là \(a=b=1\)

31 tháng 7 2017

Đặt √x=a;√y=b,ta có;a^3+b^3=2ab;a+b=2>>>(a+b)(a^2-ab+b^2)=2(a^2-ab+b^2)=2ab

a^2-ab+b^2=ab >>>(a-b)^2=0 >>>a=b>>>x=y=1