Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+2y=6\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=5\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\2x-3.1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
b, \(x^2-7x+10=0\\ \Leftrightarrow x^2-5x-2x+10=0\\ \Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(a,\)\(\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=9\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2.2-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(2;1\right)\)
\(b,x^2-7x+10=0\)
\(\Delta=b^2-4ac=\left(-7\right)^2-4.10=9>0\)
\(\Rightarrow\) Pt có 2 nghiệm \(x_1,x_2\)
Ta có :
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{7+3}{2}=5\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{7-3}{2}=2\end{matrix}\right.\)
Vậy \(S=\left\{5;2\right\}\)
\(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\x-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=3\left(x+y+1\right)\\2\left(x-3y-5\right)=2x-y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y-3x-3y=3\\2x-6y-10-2x+y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-4y=3\\-5y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x+4y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x=-3-4y=-3-4\cdot\left(-2\right)=8-3=5\end{matrix}\right.\)
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x=2-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\x+y=10\end{matrix}\right.\)Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\Rightarrow x=4;y=6\)
a.\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=6\\2x-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=15\\2x-3y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2.3-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+y-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2x+2y=20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=20\\3x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\3.4-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
1: Khi m=3 thì hệ phương trình (1) trở thành:
\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)
2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)
hay m=-2/3
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
\(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\3y^2+9y+2x^2-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\9y^2+27y+6x^2-12x=0\end{matrix}\right.\)
\(\Rightarrow\left(y^3+9y^2+27y\right)-\left(x^3-6x^2+12x\right)=-35\)
\(\Rightarrow\left(y^3+9y^2+27y+27\right)-\left(x^3-6x^2+12x-8\right)=0\)
\(\Rightarrow\left(y+3\right)^3-\left(x-2\right)^2=0\)
\(\Rightarrow\left(y-x+5\right)\left[\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\right]=0\)
*Với \(x=y+5\). Thay vào (1) ta được:
\(2\left(y+5\right)^2+3y^2=4\left(y+5\right)-9y\)
\(\Leftrightarrow2y^2+20y+50+3y^2=4y+20-9y\)
\(\Leftrightarrow5y^2+25y+30=0\Leftrightarrow y^2+5y+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=-3\end{matrix}\right.\)
*\(y=-2\Rightarrow x=3\) ; \(y=-3\Rightarrow x=2\).
*Với \(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2=0\). Ta có:
\(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(y+3\right)+\dfrac{\left(x-2\right)}{2}\right]^2+\dfrac{3}{4}\left(x-2\right)^2\ge0\)
Dấu "=" xảy ra khi \(x=2;y=-3\)
Vậy \(x=2;y=-3\)
Thử lại ta có nghiệm (x;y) của hệ đã cho là \(\left(3;-2\right),\left(2;-3\right)\)
\(\left\{{}\begin{matrix}2x-y=-3\left(1\right)\\x+3y=2\left(2\right)\end{matrix}\right.\)
Nhân \(3\) vào 2 vế của pt \(\left(1\right):-6x+3y=9\left(3\right)\)
Lấy \(\left(3\right)-\left(2\right):\)
\(-7x=7\)
\(\Leftrightarrow x=-1\)
Thay \(x=-1\) vào \(\left(1\right):2.\left(-1\right)-y=-3\)
\(\Rightarrow y=1\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(-1;1\right)\)
e iu qua lý đi :<