K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

15 tháng 1 2020

3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1 \)

<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)

hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

25 tháng 3 2020
https://i.imgur.com/7cnlYst.jpg
25 tháng 3 2020

a, Ta có : \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\left(x-y\right)=4-10=-6\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=x-6\\\left(x+x-6\right)+2\left(x-x+6\right)=5\end{matrix}\right.\)

=> ​​\(\left\{{}\begin{matrix}y=x-6\\x+x-6+12=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=x-6\\2x=-1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=-\frac{1}{2}-6=-\frac{13}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất là \(\left(x;y\right)=\left(-\frac{1}{2};-\frac{13}{2}\right)\)

b, ĐKXĐ : \(\left\{{}\begin{matrix}x-2y\ne0\\x+2y\ne0\end{matrix}\right.\)

=> \(x\ne\pm2y\)

- Ta có : \(\left\{{}\begin{matrix}\frac{6}{x-2y}+\frac{2}{x+2y}=3\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\end{matrix}\right.\)

=> ​​\(\left\{{}\begin{matrix}\frac{6}{x-2y}+\frac{2}{x+2y}=3\left(I\right)\\\frac{6}{x-2y}+\frac{8}{x+2y}=-2\left(II\right)\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{12}{x-2y}+\frac{4}{x+2y}=6\left(III\right)\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\left(IV\right)\end{matrix}\right.\)

- Lấy ( I ) - ( II ) và ( III ) - ( IV ) ta được hệ phương trình :

\(\left\{{}\begin{matrix}-\frac{6}{x+2y}=5\\\frac{9}{x-2y}=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+10y=-6\\7x-14y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}35x+70y=-42\\35x-70y=45\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\frac{6}{x+2y}=5\\140y=-87\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\frac{6}{x-\frac{174}{140}}=5\\y=-\frac{87}{140}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x-\frac{870}{140}=-6\\y=-\frac{87}{140}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{3}{70}\\y=-\frac{87}{140}\end{matrix}\right.\)

Vậy hệ phương trình trên có nghiệm duy nhất là \(\left(x;y\right)=\left\{\frac{3}{70};-\frac{87}{140}\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 1:

Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)

Khi đó hệ PT trở thành:

\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)

Có: \(a^4+b^4=81\)

\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)

\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)

\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)

\(\Leftrightarrow 2a^2b^2-36ab=0\)

\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)

Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$

$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$

Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$

Dễ thấy pt này vô nghiệm nên loại

Vậy......

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 2:

ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)

HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$

$\Rightarrow (a,b)=(2,1); (1,2)$

Nếu $(a,b)=(2,1)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)

$y=1\rightarrow x=3$

$y=-1\rightarrow y=5$

Nếu $(a,b)=(1,2)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)

\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)

Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$

Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$

Vậy...........