Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Leftrightarrow\left\{{}\begin{matrix}25x+15y=40xy\left(1\right)\\24x+16y=40xy\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2), ta được: x-y=0\(\Leftrightarrow x=y\)
Thay vào 5x+3y=8xy ta được: \(5x+3x=8x^2\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\).\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0);(1;1).
b)\(\Leftrightarrow\left\{{}\begin{matrix}-5x+5y=5xy\left(1\right)\\4x+3y=5xy\left(2\right)\end{matrix}\right.\)
Lấy (2) trừ (1) ta được: 9x-2y=0 \(\Leftrightarrow y=\dfrac{9x}{2}\)
Thay vào -x+y=xy ta được: \(-x+\dfrac{9x}{2}=x^2\)
\(\Leftrightarrow-2x+9x=2x^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{7}{2}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=\dfrac{63}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0).
c) Từ 2x-y=5\(\Rightarrow y=2x-5\)
Thay vào \(\left(x+y+2\right)\left(x+2y-5\right)=0\), ta được:
\(\left(3x-3\right)\left(5x-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=5\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\left(TM\right)\\y=5\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (3;1).
Coi PT thứ nhất là PT(1) và PT thứ 2 là PT(2)
a)
Từ PT$(2)\Rightarrow y=18-5x$
Thế vào PT$(1)$: $3x-2(18-5x)=5$
$\Leftrightarrow 13x=41\Leftrightarrow x=\frac{41}{13}$
\(y=18-5x=18-5.\frac{41}{13}=\frac{29}{13}\)
Vậy.......
b)
PT\((1)\Rightarrow y=2x-8\)
Thế vào $PT(2)\Rightarrow$ \(x+3(2x-8)=10\)
$\Leftrightarrow 7x=34\Rightarrow x=\frac{34}{7}$
$y=2x-8=2.\frac{34}{7}-8=\frac{12}{7}$
Vậy........
c)
HPT \(\Leftrightarrow \left\{\begin{matrix} 12x-9y=6\\ 12x-16y=-8\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 12x=9y+6$
Thế vào PT$(2)\Rightarrow 9y+6-16y=-8$
$\Leftrightarrow y=2$
$x=\frac{9y+6}{12}=\frac{9.2+6}{12}=2$
Vậy.........
d)
HPT \(\Leftrightarrow \left\{\begin{matrix} 10x+25y=65\\ 10x-6y=-28\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 10x=65-25y$
Thế vào PT$(2)\Rightarrow 65-25y-6y=-28$
$\Leftrightarrow y=3$
$x=\frac{65-25y}{10}=\frac{65-25.3}{10}=-1$
Vậy........
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x-y=3\left(1\right)\Rightarrow y=x-3\left(3\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow3x-4\left(x-3\right)=2\)
\(\Leftrightarrow3x-4x+12=2\)
\(\Leftrightarrow-x=-10\Leftrightarrow x=10\)
thay x=10 vào (3)\(\Rightarrow y=10-3=7\)
Nghiệm của hệ \(\left\{10;7\right\}\)
b)\(\left\{{}\begin{matrix}7x-3y=5\left(1\right)\\4x+y=2\left(2\right)\Rightarrow y=2-4x\left(3\right)\end{matrix}\right.\)
thay (3) vào (1)\(\Rightarrow7x-3\left(2-4x\right)=5\)
\(\Leftrightarrow7x-6+12x=5\)
\(\Leftrightarrow19x=11\Leftrightarrow x=\dfrac{11}{19}\)
thay \(x=\dfrac{11}{19}vào\left(3\right)\)\(\Rightarrow y=2-4\dfrac{11}{19}=-\dfrac{6}{19}\)
nghiệm của hệ \(\left\{\dfrac{11}{19};\dfrac{-6}{19}\right\}\)
c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)
\(\Leftrightarrow-10-15y-4y=1\)
\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)
thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)nghiệm của hệ \(\left\{\dfrac{-5}{9};\dfrac{-11}{19}\right\}\)
c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)
\(\Leftrightarrow-10-15y-4y=1\)
\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)
thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)
nghiệm của hệ\(\left\{\dfrac{-5}{19};\dfrac{-11}{19}\right\}\)
CHÚC BẠN HỌC TỐT !
-có người nhờ t làm
\(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-3y=9\left(1\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\) lấy (1)-(2) tìm được x;sau đó dễ dàng có y
\(\left\{{}\begin{matrix}7x-3y=5\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}28x-12y=20\left(1\right)\\28x+7y=14\left(2\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+3y=-2\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\left(1\right)\\5x-4y=11\left(2\right)\end{matrix}\right.\)
Gt: Nhân sao cho cả 2 pt xuất hiện chung 1 thừa số,trừ đi chỉ còn 1 x or y
1/
\(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=6\\3x-3y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(2;0\right)\)
2/
\(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=2\\-4x+6y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0x=4\\-4x+6y=2\end{matrix}\right.\)
Vì 0x=4 vô nghiệm \(\Rightarrow-4x+6y=2\) vô nghiệm
Vậy hệ phương trình đã cho vô nghiệm
3/ \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+15y=25\\10x-8y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}23y=23\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\5x-4=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (1;1)
a, \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Từ x - y = 3 => x = 3 + y.
Thay x = 3 + y vào phương trình 3x - 4y = 2.
Ta được 3(3 + y) - 4y = 2 ⇔ 9 + 3y - 4y = 2.
⇔ -y = -7 ⇔ y = 7
Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.
Vậy hệ phương trình có nghiệm (10; 7).
b) Từ 4x + y = 2 => y = 2 - 4x.
Thay y = 2 - 4x vào phương trình 7x - 3y = 5.
Ta được 7x - 3(2 - 4x) = 5 ⇔ 7x - 6 + 12x = 5.
⇔ 19x = 11 ⇔ x =
Thay x = vào y = 2 - 4x ta được y = 2 - 4 . = 2 - = -
Hệ phương trình có nghiệm (; -)
c) Từ x + 3y = -2 => x = -2 - 3y.
Thay vào 5x - 4y = 11 ta được 5(-2 - 3y) - 4y = 11
⇔ -10 - 15y - 4y = 11
⇔ -19y = 21 ⇔ y = -
Nên x = -2 -3(-) = -2 + =
Vậy hệ phương trình có nghiệm (; -).
Từ x - y = 3 => x = 3 + y.
Thay x = 3 + y vào phương trình 3x - 4y = 2.
Ta được 3(3 + y) - 4y = 2 ⇔ 9 + 3y - 4y = 2.
⇔ -y = -7 ⇔ y = 7
Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.
Vậy hệ phương trình có nghiệm (10; 7).
b) Từ 4x + y = 2 => y = 2 - 4x.
Thay y = 2 - 4x vào phương trình 7x - 3y = 5.
Ta được 7x - 3(2 - 4x) = 5 ⇔ 7x - 6 + 12x = 5.
⇔ 19x = 11 ⇔ x =
Thay x = vào y = 2 - 4x ta được y = 2 - 4 . = 2 - = -
Hệ phương trình có nghiệm (; -)
c) Từ x + 3y = -2 => x = -2 - 3y.
Thay vào 5x - 4y = 11 ta được 5(-2 - 3y) - 4y = 11
⇔ -10 - 15y - 4y = 11
⇔ -19y = 21 ⇔ y = -
1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)
2) 2 pt 3 ẩn không giải được.
3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}45x^2+75xy-60y^2=570\\190x^2-342xy-114y^2=570\end{matrix}\right.\)
\(\Rightarrow145x^2-417xy-54y^2=0\)
\(\Leftrightarrow\left(x-3y\right)\left(145x+18y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3y\\x=-\frac{18}{145}y\end{matrix}\right.\)
Thay vào pt đầu ....