Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ 2 vế ta được: (4x + 2)2 - (4y + 2)2 = 2y - 2x => (4x + 2 + 4y + 2).(4x + 2 - 4y - 2) + 2x - 2y = 0
=> (4x + 4y + 4).(4x - 4y) + 2.(x - y) = 0
=> 16.(x + y + 1).(x - y) + 2.(x - y) = 0
=> 8.(x + y + 1).(x - y) + 2.(x - y) = 0
=> (x - y). (8x + 8y + 8 + 2) = 0
=> (x - y).(8x + 8y + 10) = 0
=> (x - y).(4x + 4y + 5) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x=y\\4x+4y+5=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=y\\x=\frac{-5-4y}{4}\end{array}\right.\)
Tới đây bạn chia ra 2 trường hợp giải nha
Lấy (2) trừ (1), ta có :
\(\left(4x-4y\right)\left(4x+4y+4\right)=2y-2x\)
\(\Leftrightarrow2\left(x-y\right)\left(8x+8y+9\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\8x+8y+9=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}y=x\\y=-\frac{8x+9}{8}\end{array}\right.\)
* Với \(y=x\), thay vào (1) ta có :
\(\left(4x+2\right)^2=2x+15\)
\(\Leftrightarrow16x^2+14x-11=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{11}{8}\end{array}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{1}{2};\frac{1}{2}\right);\left(x;y\right)=\left(-\frac{11}{8};-\frac{11}{8}\right)\) là nghiệm của hệ phương trình
* Với \(y=-\frac{8x+9}{8}\), ta có :
\(\left(4x+2\right)^2=15-\frac{8x+9}{4}\)
\(\Leftrightarrow64x^2+72x-35=0\)
\(\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{16}\)
Khi \(x=\frac{-9-\sqrt{221}}{16}\Rightarrow y=\frac{-9+\sqrt{221}}{16}\)
Khi \(x=\frac{-9+\sqrt{221}}{16};y=\frac{-9-\sqrt{221}}{16}\)
Hệ đã cho có 4 nghiệm :
\(\left(\frac{1}{2};\frac{1}{2}\right);\left(-\frac{11}{8};-\frac{11}{8}\right);\left(\frac{-9-\sqrt{221}}{16};\frac{-9+\sqrt{221}}{16}\right);\left(\frac{-9+\sqrt{221}}{16};\frac{-9-\sqrt{221}}{16}\right)\)
Điều kiện : \(x>-\frac{1}{3};y>-\frac{1}{3}\). Lấy hai phương trình của hệ trừ nhau :
\(3x^2+4x+2\ln\left(3x+1\right)-3y^2+4y+2\ln\left(3y+1\right)=2y-2x\left(1\right)\)
\(\Leftrightarrow3x^2+6+2\ln\left(3x+1\right)=3y^2+6y+2\ln\left(3y+1\right)\left(2\right)\)
Xét hàm số \(f\left(t\right)=3t^2+6t+2\ln\left(3t+1\right)\) trên khoảng \(\left(-\frac{1}{3};+\infty\right)\)
Ta có : \(f'\left(t\right)=6t+6+\frac{6}{3t+1}>0\), với mọi \(t\in\left(-\frac{1}{3};+\infty\right)\)
Vậy hàm số \(f\left(t\right)\) đồng biên trên khoảng \(\left(-\frac{1}{3};+\infty\right)\). Từ đó (2) xảy ra khi và chỉ khi x = y. Thay vào hệ phương trình đã cho, ta được :
\(3x^2+4x+2\ln\left(3x+1\right)=2x\)
\(\Leftrightarrow3x^2+2x+2\ln\left(3x+1\right)=0\) (3)
Dễ thấy x = 0 thỏa mãn (3)
Xét hàm số \(g\left(x\right)=3x^2+2x+2\ln\left(3x+1\right)\)
Ta có : \(g'\left(x\right)=6x+2+\frac{5}{3x+1}>0\) với mọi \(x>-\frac{1}{3}\)Vậy hàm số \(g\left(x\right)\) đồng biến trên \(\left(-\frac{1}{3};+\infty\right)\)suy ra x = 0 là nghiệm duy nhất của (3)Hệ phương trình ban đầu có nghiệm (x;y) = (0;0)1,\(x^2-2y^2-xy=0\)
<=> \(\left(x-2y\right)\left(x+y\right)=0\)
<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)
Sau đó bạn thế vào PT dưới rồi tính
3. ĐKXĐ \(x\le1\); \(x+2y+3\ge0\)
.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)
<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)
<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)
Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\); \(x\le1\)nên \(-y^2+x+2y-4< 0\)
=> \(x=2y\)
Thế vào Pt còn lại ta được
\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)
<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)
<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )
Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
V1 <=> \(xy^2+4y^2+8-x^2+2x-4x=0\)
<=> \(y^2\left(x+4\right)+2\left(x+4\right)-x\left(x+4\right)=0\)
<=> \(\left(y^2+2-x\right)\left(x+4\right)=0\)
<=>\(\orbr{\begin{cases}x=y^2+2\\x=-4\end{cases}}\)
TH1: Thay \(x=y^2+2\)vào V2:
\(y^2+2+y+3=3\sqrt{2y-1}\)
<=> \(2y^2+\left(2y-1\right)-6\sqrt{2y-1}+9+2=0\)
<=> \(2\left(y^2+1\right)+\left(\sqrt{2y-1}-3\right)^2=0\)
<=> \(\hept{\begin{cases}y^2=-1\left(\text{loại}\right)\\\sqrt{2y-1}=3\end{cases}}\)
<=> 2y - 1 = 9
<=> y = 5
=> \(x=y^2+2=27\)
TH2: Thay x = -4 vào V2, tương tự đc \(\orbr{\begin{cases}y=10-3\sqrt{10}\\y=10+3\sqrt{10}\end{cases}}\)
đặt ẩn hoặc pp thay thế thôi bn đăng muộn quá mk ngủ đây chiều rảnh giải cho