\(2.y^3+7y+2x.\sqrt{1-x}=3.\sqrt{1-x}+3.\left(2.y^2+1\right)\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Hệ <=> (x + y)y + x2 + 1 - 4y = 0 và y(x + y)2 - 2(x2 + 1 ) - 7y = 0 

Chia cả 2 vế của 2 phương trình cho y, ta được hệ : 

( x + y) + (x2 + 1)/y - 4 = 0 và ( x + y)2 - 2(x2 + 1)/y - 7 = 0 

đặt a = x + y 

b = ( x2 + 1)/y 

Ta có hệ : 

a + b - 4 = 0 và a2 - 2b - 7 = 0 

Giải ra ta có ( x,y ) = (1,2 ) hoặc ( -2,5 

26 tháng 8 2017

\(\hept{\begin{cases}2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left(2y^2+1\right)\left(1\right)\\\sqrt{2y^2-4y+3}=5-y+\sqrt{x+4}\left(2\right)\end{cases}}\)

Từ có:

\(\left(1\right)\Leftrightarrow\left(2y^3-6y^2+6y-2\right)+\left(y-1\right)=\sqrt{1-x}+2\sqrt{1-x}-2x\sqrt{1-x}\)

\(\Leftrightarrow2\left(y-1\right)^3+\left(y-1\right)=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)

Xét hàm số: \(f\left(a\right)=a^3+a\) ta thấy hàm số này đồng biến nên từ đây ta có thể suy ra.

\(y-1=\sqrt{1-x}\)

\(\Leftrightarrow x=-y^2+2y\) thế vô (2) ta được

\(\sqrt{2y^2-4y+3}=5-y+\sqrt{-y^2+2y+4}\)

Tới đây thì không khó nữa. Bạn làm nốt nhé

24 tháng 8 2017

bài đầu tiên bằng -3

bài thứ hai mình ko biết

25 tháng 8 2017

Dễ =))

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien

7 tháng 9 2021

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)