Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x-2)5=(x-2)3.(x-2)2=(x3-6x2+12x-8)(x2-4x+4)=x5-6x4+12x3-8x2-4x4+24x3-48x2+32x+4x3-24x2+48x-32 = x5-10x4+40x3-32x2+80x-32
(x-1)4=(x-1)2(x-1)2 = (x2-2x+1)(x2-2x+1)=x4-2x3+x2-2x3+4x2-2x+x2-2x+1=x4-4x3+6x2-4x+1
Và: (x+1)2=x2+2x+1
=> P(x)= (x5-10x4+40x3-32x2+80x-32) + (x4-4x3+6x2-4x+1) + x3 +(x2+2x+1)+x+2
=> P(x)= x5-10x4+40x3-32x2+80x-32 + x4-4x3+6x2-4x+1 + x3 +x2+2x+1+x+2
=> P(x)= x5-9x4+37x3-25x2+79x-28
=> a=1; b=-9; c=37; d=-25; e=79; f=-28
=> a+3b+c+3d+e+3f = 1+3(-9)+37+3(-25)+79+3(-28) = 1-27+37-75+79-84=(1+37+79)-(27+75+84)=117-186
=> a+3b+c+3d+e+3f = - 69
Ta có :\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+1}{x^2-1}\)
\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{x^2-1}\)
\(=\frac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)
a)
(x-2).(x+2)-(x+2)^2=4
<=>(x^2-2^2)-(x^2+4x+4)=4
<=> x^2-4-x^2-4x-4=4
<=> -4x=12
<=> x=-3
a) ( x - 2 )( x + 2 ) - ( x + 2 )2 = 4
<=> x2 - 4 - ( x2 + 4x + 4 ) = 4
<=> x2 - 4 - x2 - 4x - 4 = 4
<=> -4x - 8 = 4
<=> -4x = 12
<=> x = -3
b) 4( x + 1 )2 + ( 2x - 1 )2 - 8( x - 1 )( x + 1 ) = 11
<=> 4( x2 + 2x + 1 ) + 4x2 - 4x + 1 - 8( x2 - 1 )
<=> 4x2 + 8x + 4 + 4x2 - 4x + 1 - 8x2 + 8 = 11
<=> 4x + 13 = 11
<=> 4x = -2
<=> x = -2/4 = -1/2
\(\left(x-1\right)\left(x+2\right)+\left(x+1\right)x=x^2+2x-x-2+x^2+x=\left(x^2+x^2\right)+\left(2x-x+x\right)-2=2x^2+2x-2=2\left(x^2+x-1\right)\)
Đặt biểu thức đã cho là A.
Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)
= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))
Rút gọn triệt tiêu ta được 2A=3^64 - 1
=> A = (3^64 - 1)/2
x+1/x^2+x+1 -(x-1)/x^2+x+1=3/x(x^4+x^2+1)
đkxđ x khác 0
[(x+1)(x^2-x+1)-(x-1)(x^2+x+1)] /(x^2+x+1)(x^2-x+1)=3/x(x^4+x^2+1)
[(x^3+1)-(x^3-1)]/x^4+x^2+1=3/x(x^4+x^2+1)
nhân 2 vế pt cho x(x^4+x^2+1) ta được
x(x^3+1-x^3+1)=3
<=> 2x=3
<=>x=3/2 (thỏa)
S={3/2}
Đặt \(x^2+x+1=a\ne0vàx^2-x+1=b\ne0\)
\(\Rightarrow b-a=-2xvàb+a=2x^2+2\)
và điều kiện \(x\ne0\)
thì \(x\left(x^4+x^2+1\right)=xab\)
\(\Rightarrow PT\Leftrightarrow\frac{x+1}{a}-\frac{x-1}{b}=\frac{3}{xab}\)
\(\Leftrightarrow\frac{bx\left(x+1\right)-ax\left(x-1\right)}{xab}=\frac{3}{xab}\)
\(\Leftrightarrow bx^2+bx-ax^2+ax=3\)
\(\Leftrightarrow x^2\left(b-a\right)+x\left(b+a\right)-3=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)(tm)
Vậy \(x=\frac{2}{3}\) là nghiệm của pt
( x - 1)3 - (x + 3) . (x2 - 3x + 9) + 3 . (x + 2) - (x - 2) = 2
=>x3-3x2.(-1)+3x.(-1)2-(-1)3-x(x2-3x+9)-3(x2-3x+9)+3x+6-x+2=2
x3+3x2+3x+1-x3+3x2-9x-3x2+9x-27+3x+6-x+2=2
(x3-x3)+(3x2+3x2-3x2)+(3x-9x+9x+3x-x)+(1-27+6+2)=2
3x2-5x-18=2
x(3x-5)=20
Thử lần lượt nha bạn
Bài 2
(x+y+z)2-2(x+y+z)(x+y)+(x+y)2
=(x+y+z)2-2x2-4xy-2xz-2yz+x2+2.xy+y2
=z2+(y+x)2z+y2+2xy+x2-2x2-4xy-2z(x+y)+x2+2xy+y2
=z2+(x+y)2z-2z(x+y)+(y2+y2)+(2xy+2xy-4xy)+(x2-2x2+x2)
=z2+2y2
Ta có: \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}\)
\(\Leftrightarrow\)(x, y) = (1, 1; 1, - 1; - 1, 1; - 1, - 1)
\(\left(x^2+1\right)\left(x^4-x^2+1\right)\)
\(=x^4x^2+1.x^4-\left(x^2\right)^2+1.x^2-1.x^2+1.1\)
\(=x^6+x^4-x^4+1\)
\(=x^6+1\)
bạn áp dụng HĐT: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\left(x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2\right)^3+1^3\)
\(=x^6+1\)