K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

giả sử phương trình đã cho có nghiệm này gấp đôi nghiệm kia 

Và áp dụng hệ thúc viet ta có:

\(\begin{cases}x_1+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}2x_2+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}3x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}x_2=\frac{-p}{3}\\x_{1.}.x_2=q\left(1\right)\\x_1=\frac{-2p}{3}\end{cases}\)

Thay \(x_1\)=\(\frac{-2p}{3}\)\(x_2\)=\(\frac{-p}{3}\) vào (1) ta có:

\(\frac{-2p}{3}\).\(\frac{-p}{3}\)=q

2\(p^2\)=9q

2\(p^2\)-9q=0

Vậy khi 2\(p^2\)-9q=0 thì phương trình trên có nghiệm này gấp 2 nghiệm kia

 

18 tháng 10 2023

`a)\sqrt{16x+48}+\sqrt{x+3}=15`     `ĐK: x >= -3`

`<=>4\sqrt{x+3}+\sqrt{x+3}=15`

`<=>5\sqrt{x+3}=15`

`<=>\sqrt{x+3}=3`

`<=>x+3=9<=>x=6` (t/m).

`b)\sqrt{x^2-4}-3\sqrt{x-2}=0`     `ĐK: x >= 2`

`<=>\sqrt{x-2}(\sqrt{x+2}-3)=0`

`<=>[(\sqrt{x-2}=0),(\sqrt{x+2}=3):}`

`<=>[(x-2=0),(x+2=9):}<=>[(x=2(t//m)),(x=7(t//m)):}`

18 tháng 10 2023

tui c.ơn cậu nhiều lắmyeu

NV
21 tháng 1

\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\)

\(=\left(\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\right).\left(1-4x\right)\)

\(=\left(\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\right)\left(1-4x\right)\)

\(=\dfrac{-4\sqrt{x}.\left(4x-1\right)}{4x-1}=-4\sqrt{x}\)

21 tháng 1

\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\left(dkxd:x\ge0;x\ne\dfrac{1}{4}\right)\)

\(=\left[\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right]\cdot\left(1-4x\right)\)

\(=\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\cdot\left[-\left(4x-1\right)\right]\)

\(=4\sqrt{x}\cdot\left(-1\right)\)

\(=-4\sqrt{x}\)

28 tháng 7 2021

đề sai đúng ko ta

28 tháng 7 2021

đề đúng nha

 

ĐKXĐ: \(\left\{{}\begin{matrix}x-7>=0\\9-x>=0\end{matrix}\right.\)

=>7<=x<=9

\(\sqrt{x-7}+\sqrt{9-x}=3x^2-48x+194\)

=>\(\sqrt{x-7}-1+\sqrt{9-x}-1=3x^2-48x+192\)

=>\(\dfrac{x-7-1}{\sqrt{x-7}+1}+\dfrac{9-x-1}{\sqrt{9-x}+1}=3\left(x^2-16x+64\right)\)

=>\(\dfrac{x-8}{\sqrt{x-7}+1}-\dfrac{x-8}{\sqrt{9-x}+1}-3\left(x-8\right)^2=0\)

=>\(\left(x-8\right)\left(\dfrac{1}{\sqrt{x-7}+1}-\dfrac{1}{\sqrt{9-x}+1}-3x+24\right)=0\)

=>x-8=0

=>x=8(nhận)

6 tháng 11 2023

Cảm ơn!!!yeu

27 tháng 5 2022

`48/[x+4]+48/[x-4]=5`           `ĐK: x \ne +-4`

`<=>[48(x-4)+48(x+4)]/[(x-4)(x+4)]=[5(x+4)(x-4)]/[(x-4)(x+4)]`

   `=>48x-192+48x+192=5x^2-80`

`<=>5x^2-96x-80=0`

`<=>5x^2-100+4x-80=0`

`<=>5x(x-20)+4(x-20)=0`

`<=>(x-20)(5x+4)=0`

`<=>` $\left[\begin{matrix} x=20\\ x=\dfrac{-4}{5}\end{matrix}\right.$   (t/m)

Vậy `S={-4/5;20}`

27 tháng 5 2022

ĐK : \(x\ne\pm4\)

\(\Leftrightarrow\cdot\dfrac{48\left(x+4\right)+48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow48x+192+48x-192==5x^2-80\)

\(\Leftrightarrow96x=5x^2-80\)

\(\Leftrightarrow5x^2-96x-80=0\)

\(\Leftrightarrow5x^2+4x-100-80=0\)

\(\Leftrightarrow4\left(x-20\right)+5x\left(x-20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{4}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2021

Lời giải:

ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow (3x^2-10x-25)=2(x+3)(\sqrt{2x-1}-3)$

$\Leftrightarrow (x-5)(3x+5)=2(x+3).\frac{2(x-5)}{\sqrt{2x-1}+3}$

\(\Leftrightarrow (x-5)\left[(3x+5)-\frac{4(x+3)}{\sqrt{2x-1}+3}\right]=0\)

Xét biểu thức trong ngoặc vuông:

\(\Leftrightarrow (3x+5)(\sqrt{2x-1}+3)=4(x+3)\)

\(\Leftrightarrow (3x+5)\sqrt{2x-1}=-(3+5x)\)

Dễ thấy điều này vô lý vì với $x\geq \frac{1}{2}$ thì vế trái không âm còn vế phải âm.

Vậy $x-5=0\Leftrightarrow x=5$