Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M(x)+N(x)=7x^3-8x^2-13x-7
b: M(x)+Q(x)=12x^3-2x^2-5x-20
c: N(x)+Q(x)=13x^3-22x-9
d: N(x)-Q(x)=-5x^3-6x^2-8x+13
e: Q(x)-M(x)=6x^3+8x^2-9x-2
Câu 3:
a: Xét ΔABC có AB<BC
nên \(\widehat{ACB}< \widehat{BAC}\)
b: Xét ΔABM có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABM cân tại A
mà \(\widehat{B}=60^0\)
nên ΔABM đều
a: Xét tứ giác ADFE có
AD//FE
AE//DF
Do đó: ADFE là hình bình hành
=>AD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\left(=\widehat{B}\right)\)
AD=EF
\(\widehat{DAE}=\widehat{FEC}\)(hai góc đồng vị, EF//AB)
Do đó: ΔADE=ΔEFC
c: Xét ΔACB có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
=>EA=EC
Xét ΔACB có
E là trung điểm của CA
EF//AB
Do đó: F là trung điểm của BC
=>FB=FC
Bài 13:
a: Xét ΔAIB có \(\widehat{AIC}\) là góc ngoài tại đỉnh I
nên \(\widehat{AIC}=\widehat{ABI}+\widehat{BAI}=60^0+\widehat{BAI}\)
=>\(\widehat{AIC}>60^0\)
b: Ta có: \(\widehat{AIC}>60^0\)
\(\widehat{ACI}=60^0\)
Do đó: \(\widehat{AIC}>\widehat{ACI}\)
Xét ΔAIC có \(\widehat{AIC}>\widehat{ACI}\)
mà AC,AI lần lượt là các cạnh đối diện của các góc AIC và ACI
nên AC>AI
3: Vì I nằm giữa B và C nên tia AI nằm giữa hai tia AB và AC
=>\(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)
=>\(\widehat{BAI}+\widehat{CAI}=60^0\)
=>\(\widehat{CAI}< 60^0\)
=>\(\widehat{CAI}< \widehat{ACI}< \widehat{AIC}\)
Xét ΔACI có \(\widehat{CAI}< \widehat{ACI}< \widehat{AIC}\)
mà CI,AI,AC lần lượt là các cạnh đối diện của các góc CAI;ACI;AIC
nên CI<AI<AC
Bài 12:
a: Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADB}=\widehat{DAC}+\widehat{ACD}\)
=>\(\widehat{ADB}=60^0+\widehat{DAC}\)
=>\(\widehat{ADB}>60^0\)
b: Xét ΔADB có \(\widehat{ADB}>\widehat{ABD}\)
mà AB,AD là các cạnh đối diện của các góc ADB,ABD
nên AB>AD
mà AB=AC
nên AC>AD
3: Vì D nằm giữa B và C nên tia AD nằm giữa hai tia AB và AC
=>\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
=>\(\widehat{BAD}+\widehat{CAD}=60^0\)
=>\(\widehat{BAD}< 60^0\)
=>\(\widehat{BAD}< \widehat{ABD}< \widehat{ADB}\)
Xét ΔBAD có \(\widehat{BAD}< \widehat{ABD}< \widehat{ADB}\)
mà BD,AD,AB là các cạnh đối diện của các góc BAD;ABD;ADB
nên BD<AD<AB
Kẻ Cp//Bm
\(\Rightarrow\widehat{BCp}=180^0-\widehat{CBm}=30^0\) (trong cùng phía)
\(\Rightarrow\widehat{DCp}=50^0-30^0=20^0\\ \Rightarrow\widehat{DCp}+\widehat{CDn}=180^0\)
Mà 2 góc này ở vị trí TCP nên Cp//Dn
Vậy Bm//Dn
Kẻ Cz//Bm ta có: \(\widehat{mBC}+\widehat{BCz}=180^o\Rightarrow\widehat{BCz}=30^o\)
\(Tacó:\widehat{BCD}=\widehat{BCz}+\widehat{zCD}\Rightarrow\widehat{zCD}=20^o\)
\(\widehat{zCD}+\widehat{CDn}=20^o+160^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía ⇒Cz//Dn
Cz//Bm, Cz//Dn⇒BM//DN