K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)

\(A=1-\dfrac{1}{2^{10}}\)

Đặt:

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)

\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(A=1-\dfrac{1}{2^{10}}\)

\(A=1-\dfrac{1}{1024}=\dfrac{2023}{2024}\)

3 tháng 7 2018

Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2014}\)

\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(-A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow-2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(\Rightarrow-2A-\left(-A\right)=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\right)\)

\(-A=2-\frac{1}{2^{10}}\)

\(\Rightarrow A=\frac{1}{2^{10}}-2\)

24 tháng 1 2017

đặt A = \(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)

ta có:

A = \(-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)

A = \(-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)

Đặt B = \(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)

ta có:

B = \(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)

=> 2B = \(2+1+\frac{1}{2}+...+\frac{1}{512}\)

=> 2B - B = \(\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)

=> B = \(2-\frac{1}{1024}\)

=> B = \(\frac{2048}{1024}-\frac{1}{1024}=\frac{2047}{1024}\)

Thay B vào A ta có:

A = \(\frac{-2047}{1024}\)

vậy A = \(\frac{-2047}{1024}\)

20 tháng 7 2017

Áp dụng bài bạn vừa đăng đó

22 tháng 2 2017

Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}\)

\(=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

Đặt \(B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\)

=> \(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

=> \(2B=2+1+\frac{1}{2^2}+...+\frac{1}{2^9}\)

=> \(B=2B-B=2-\frac{1}{2^{10}}\)

=> \(A=-\left(2-\frac{1}{2^{10}}\right)=-\left(2-\frac{1}{1024}\right)=-\frac{2047}{1024}\)

ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)

\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

tách

\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)

\(2B-B=\frac{1}{2}-\frac{1}{1024}\)

thay vào B ta có 

\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)

17 tháng 7 2019

\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)

\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)

\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)

\(\Rightarrow A=\frac{513}{1024}\)

28 tháng 12 2016

-1-1/2-1/4-1/8......-1/1024

=-(1+1/2+1/4+1/8...+1/1024)

mà ta có 1024=2^10

nên -(1+1/2+1/4+1/8...+1/1024)

=-(2^9+2^8+2^7....+1)/2^10

=-(1023/1024)

=-1,99.........

19 tháng 1 2017

mình sẽ làm lại bai này cho đúng nha

\(-1-\frac{1}{2}-\frac{1}{4}....-\frac{1}{1024}=-1-\left(\frac{1}{2}+\frac{1}{4}+...\frac{1}{1024}\right)\)

\(=-1-\left(\frac{1}{2^1}+\frac{1}{2^2}...+\frac{1}{2^{10}}\right)\)

\(=-1-\frac{1023}{1024}=\frac{-1024}{1024}-\frac{1023}{1024}=\frac{-2047}{1024}\)

vậy mới đúng nha