Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
tậ nhiệm là S = { R} R là tập số thực
X = 0
và X = X - 1 ko tương đương
vì một bên x = 0
một bên x= 1/2
1))))) S = { x/ x thuộc R} chữ thuộc viết bằng kì hiệu
2))))) bạn chép sai đề rồi
đề đúng x(x+1) =0
Giải
ở phương trình x= 0 có S={0}
ở phương trình x(x+1) có S={0;-1}
Vì hai phương trình có tập nghiêm khác nhau nên hai phương trinh ko tương đương
đây bạn nếu bạn ko hiểu thì lên mạng gõ cách lm bất phương trình mũ 2
nhows
pt: \(\left(1-2x\right)\left(x+3\right)\left(x^2+2\right)=0\)\(\Leftrightarrow\hept{\begin{cases}1-2x=0\\x+3=0\\x^2+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-3\\x^2=-2\left(loại\right)\end{cases}}\)
vậy: \(x=\frac{1}{2}\),\(x=-3\)
Cj lm 2 cách nha,e kham khảo cách nào cx đc.
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
TH1 : \(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)
TH2 : \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
TH3 : \(2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
\(\left(2x^3+4x^2+2x+x^2+2x+1\right)\left(2x+3\right)=0\)
\(\left(2x^3+5x^2+4x+1\right)\left(2x+3\right)=0\)
\(4x^4+6x^3+10x^3+15x^2+8x^2+12x+2x+3=0\)
\(4x^4+16x^3+23x^2+14x+3=0\)
\(\left(4x^2+6x+2x+3\right)\left(x+1\right)\left(x+1\right)=0\)
\(\left(2x+3\right)\left(2x-1\right)\left(x+1\right)^2=0\)
Tương tự như trên ....
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
Th1: \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Th2: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Th3: \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)
`x^2+2x+3>2`
`<=>x^2+2x+1>0`
`<=>(x+1)^2>0`
`<=>x+1 ne 0`
`<=>x ne -1`
`(x+5)(3x^2+2)>0`
Vì `3x^2+2>=2>0`
`=>x+5>0<=>x>-5`
c) Ta có: \(21x-10x^2+9< 0\)
\(\Leftrightarrow10x^2-21x-9>0\)
\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)
\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
\(3x^2+x+11=0\)
\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\)
\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\)
Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)
=> PT vô nghiêm
\(3x^2+x+11=0\)
\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)
\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)
\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)
=> Phương Trình Vô Nghiệm