K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

\(3x^2+x+11=0\)

\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\) 

\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\) 

Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)

=> PT vô nghiêm

\(3x^2+x+11=0\)

\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)

\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)

\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)

=> Phương Trình Vô Nghiệm

18 tháng 1 2017

1, 

tậ nhiệm là S = { R} R là tập số thực 

X = 0 

và X = X - 1 ko tương đương 

vì một bên x = 0 

một bên x= 1/2

18 tháng 1 2017

1)))))               S = { x/ x thuộc R}                                 chữ thuộc viết bằng kì hiệu

2)))))  bạn chép sai đề rồi

 đề đúng      x(x+1) =0

Giải

ở phương trình x= 0 có S={0}

ở phương trình x(x+1) có S={0;-1}

Vì hai phương trình có tập nghiêm khác nhau nên hai phương trinh ko tương đương

18 tháng 4 2022

đây bạn nếu bạn ko hiểu thì lên mạng gõ cách lm bất phương trình mũ 2

loading...nhowsloading...

21 tháng 4 2022

1c

2c

3a

7 tháng 7 2016

pt: \(\left(1-2x\right)\left(x+3\right)\left(x^2+2\right)=0\)\(\Leftrightarrow\hept{\begin{cases}1-2x=0\\x+3=0\\x^2+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-3\\x^2=-2\left(loại\right)\end{cases}}\)

vậy: \(x=\frac{1}{2}\),\(x=-3\)

7 tháng 7 2016

cảm ơn bạn rất nhiều ạ

Cj lm 2 cách nha,e kham khảo cách nào cx đc.

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

TH1 : \(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

TH2 : \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

TH3 : \(2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

\(\left(2x^3+4x^2+2x+x^2+2x+1\right)\left(2x+3\right)=0\)

\(\left(2x^3+5x^2+4x+1\right)\left(2x+3\right)=0\)

\(4x^4+6x^3+10x^3+15x^2+8x^2+12x+2x+3=0\)

\(4x^4+16x^3+23x^2+14x+3=0\)

\(\left(4x^2+6x+2x+3\right)\left(x+1\right)\left(x+1\right)=0\)

\(\left(2x+3\right)\left(2x-1\right)\left(x+1\right)^2=0\)

Tương tự như trên .... 

8 tháng 5 2020

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

Th1: \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Th2: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)

Th3: \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)

17 tháng 5 2021

`x^2+2x+3>2`

`<=>x^2+2x+1>0`

`<=>(x+1)^2>0`

`<=>x+1 ne 0`

`<=>x ne -1`

`(x+5)(3x^2+2)>0`

Vì `3x^2+2>=2>0`

`=>x+5>0<=>x>-5`

c) Ta có: \(21x-10x^2+9< 0\)

\(\Leftrightarrow10x^2-21x-9>0\)

\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)

\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)

 

12 tháng 4 2023

a)3x+10-2x>-11
3x - 2x > -10-11
1x > -21
x > -21
b) 3x2 - 6x + 3x2 < 36
-6x < 36
x < -6

 

29 tháng 1 2020

a) \(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)

\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)

b) \(x^5-5x^3+4x=0\)

\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)

\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)

c) \(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow x-1=0\)

hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)

hoặc \(x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)