K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

\(a+b=1\Rightarrow b=1-a\Rightarrow b^2=\left(1-a\right)^2\)

\(\Rightarrow3a^2+b^2=3a^2+\left(1-a\right)^2=4a^2-2a+1\)

Mà \(4a^2-2a+1=\left(2a\right)^2-2.2a.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(2a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\left(đpcm\right)\)

14 tháng 2 2019

2 tháng 1 2017

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

7 tháng 7 2018

Thực hiện phép tính đối với vế trái của mỗi đẳng thức.

14 tháng 7 2019

Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .

1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)

\(=>A=-12x+16\)

2) \(=>B=8x^3+27-8x^3+2=29\)

3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)

4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)

5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)

\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)

\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)

6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)

k cho mik nha , 

26 tháng 4 2017

 \(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)

 \(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)    [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]

Đặt     \(x^2-7x+9=y\) ta được :

 \(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)

 \(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)

 \(\Leftrightarrow y^2-9+9\ge0\)

\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)

tk cho mk nka !!!

26 tháng 4 2017

khó lắm !

31 tháng 8 2016

(a^2 +b^2).(x^2 +y^2) > hoặc = (ax+by)^2 
dấu " = " xảy ra khi a/x = b/y 
Vì a/x =b/y => ay=bx 
(a^2 +b^2).( x^2 +y^2)= a^2.x^2 +a^2.y^2 +b^2.x^2 + b^2.y^2 
= a^2.x^2 + b^2.x^2 +b^2.x^2 +b^2.y^2 
= (ax)^2 +2.b^2.x^2 + (by)^2 
= (ax)^2 +2.ax.by + (by)^2 ( tách b^2.x^2= b.x.b.x = a.y.b.x= ax.by) 
= (ax+by)^2 
=> đpcm +5*hjhjhkj

NV
10 tháng 3 2022

\(2a+b=2\Rightarrow b=2-2a\)

\(\Rightarrow P=3a^2+b\left(2a+b\right)=3a^2+2b=3a^2+2\left(2-2a\right)=3a^2-4a+4=3\left(a-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)

\(p_{min}=\dfrac{8}{3}\) khi \(a=\dfrac{2}{3}\)