Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(\frac{1}{5}\cdot a+2+\frac{1}{2}\cdot a+7=a\)
\(\Rightarrow2+7=a-\frac{1}{2}\cdot a-\frac{1}{5}\cdot a\)
\(\Rightarrow a\cdot\frac{3}{10}=9\)
\(\Rightarrow a=30\)
\(\frac{1}{5}a+2+\frac{1}{2}a+7=a\left(\frac{1}{5}+\frac{1}{2}\right)+2+7=\frac{7}{10}a+10=\frac{7a}{10}+10\)
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)
\(\frac{90}{x}-\frac{90}{x}+10=\frac{45}{60}\) Á sai đề chắc
\(x^4+x^2-20=0\)
\(\Leftrightarrow x^4-4x^2+5x^2-20=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+5\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^2+5=0\end{cases}}\)loại \(x^2+5=0\)vì giải trên tập số thực nên x^2+5>0
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy \(S=\left\{2;-2\right\}\)
x ^ 4 + x ^ 2 - 20 = 0
(x ^ 2 + 5) (x ^ 2 - 4) = 0
(x ^ 2 + 5) (x + 2) (x - 2) = 0
x ^ 2 + 5 = 0
x ^ 2 = -5
x = ± √-5
x = ± i√5
x + 2 = 0
x = -2
x - 2 = 0
x = 2
x = {-i√5, i√5, -2, 2}
Qui đồng thôi :|
\(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}=\dfrac{\sqrt{a}+\sqrt{c}+2\sqrt{b}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}+b}\)
Thay \(b=\dfrac{a+c}{2}\) vào cái mẫu:
\(M=\dfrac{1}{2}\left(2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}+a+c\right)\)
\(=\dfrac{1}{2}\left(2\sqrt{ab}+\sqrt{ac}+a\right)+\dfrac{1}{2}\left(c+\sqrt{ac}+2\sqrt{bc}\right)\)( nhóm tách sao cho xuất hiện tử)
\(=\dfrac{1}{2}\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}+2\sqrt{b}\right)\)
------->