K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: 

a) ĐKXĐ: \(-3\le x\le3\)

b) ĐKXĐ: \(x^2-4>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Bài 5: 

a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)

\(=\left|3-\sqrt{10}\right|\)

\(=\sqrt{10}-3\)

b) Ta có: \(\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\sqrt{5}-2\)

c) Ta có: \(3x-\sqrt{x^2-2x+1}\)

\(=3x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}3x-x+1\left(x\ge1\right)\\3x+x-1\left(x< 1\right)\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)

12 tháng 5 2021

Áp dụng BĐT Bunhiacopxki cho 2 bộ số (\(\sqrt{a+b}\),\(\sqrt{b+c}\),\(\sqrt{a+c}\)) và (1,1,1) có: (1.\(\sqrt{a+b}\)+1.\(\sqrt{b+c}\)+1.\(\sqrt{a+c}\))2 ≤ (a + b + b + c + c + a)(12 + 12 + 12)

=> S2 ≤ 2.3 = 6 ⇔ S ≤ \(\sqrt{6}\)

Dấu "=" xảy ra ⇔  \(\sqrt{a+b}\) = \(\sqrt{b+c}\) = \(\sqrt{a+c}\) ⇔ a +b = b + c = c + a

                                                                          ⇔ 1 - c = 1 - a = 1 - b

                                                                          ⇔ a = b = c = \(\dfrac{1}{3}\) 

Vậy maxS = \(\sqrt{6}\)  ⇔ a = b = c = \(\dfrac{1}{3}\) 

 

26 tháng 5 2021

Gọi x là chiều cao của tam giác ; y là cạnh đáy của tam giác (x,y > 0 )

* chiều cao  bằng 3/4 đáy:

   x = 3/4y
=> x - 3/4y = 0 (1)

* Nếu chiều cao tăng thêm...tăng thêm 9m^2:
1/2(y-2)(x+3) = 1/2xy + 9 (sau đó bạn tự giải phương trình nha) (2)
Từ (1),(2) suy ra chiều cao là 12m , cạnh đáy là 16m

26 tháng 5 2021

Bạn giải giúp mình cái hpt luôn đk, mình giải hoài k ra

1 tháng 5 2021

Đề 1:

A B C D E F M N H

a) Xét tứ giác BDHF có: \(\widehat{BDF}+\widehat{BHF}=90^o+90^o=180^o\)

=> Tứ giác BDHF nội tiếp đường tròn

b) Xét tứ giác BFEC có: \(\widehat{BFC}=\widehat{BEC}=90^o\) => BFEC là tứ giác nội tiếp

=> \(\widehat{BCF}=\widehat{BEF}\) (cùng nhìn cạnh BF) hay \(\widehat{BCN}=\widehat{BEF}\)

Xét đường tròn (O) có \(\widehat{BCN}=\widehat{BMN}\) (cùng chắn \(\stackrel\frown{BN}\)) => \(\widehat{BEF}=\widehat{BMN}\)

Mà 2 góc ở vị trí đồng vị => MN//EF

c) BDHF là tứ giác nội tiếp (cmt) => \(\widehat{DBH}=\widehat{DFH}\) (cùng nhìn cạnh DH)

BFEC là tứ giác nội tiếp (cmt) => \(\widehat{CBE}=\widehat{CFE}\) (cùng nhìn cạnh CE) 

hay \(\widehat{DBH}=\widehat{HFE}\) => \(\widehat{DHF}=\widehat{HFE}\left(=\widehat{DBH}\right)\)=> FH là phân giác \(\widehat{DFE}\)

CMTT => EH là phân giác \(\widehat{DEF}\) 

Xét ΔDEF có H là giao điểm 2 đường phân giác => H là tâm đường tròn nội tiếp ΔDEF

1 tháng 5 2021

Đề 2: 

M A O B E F I 1 1 1

a) Xét tứ giác MAOB có: \(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\)

=> Tứ giác MAOB nội tiếp đường tròn

b) Xét đường tròn (O) có: \(\widehat{IBF}=\widehat{A_1}\) (cùng chắn \(\stackrel\frown{BF}\))

Xét ΔIBF và ΔIAB có: \(\widehat{AIB}\) chung; \(\widehat{IBF}=\widehat{A_1}\) (cmt) => ΔIBF ~ ΔIAB (g.g)

=> \(\dfrac{IB}{IA}=\dfrac{IF}{IB}\) => IB2 = IF.IA  (1)

c) Do AE // MB (gt) => \(\widehat{E_1}=\widehat{M_1}\) (2 góc so le trong)

Xét đường tròn (O) có \(\widehat{E_1}=\widehat{FAM}\) (cùng chắn \(\stackrel\frown{AF}\)) => \(\widehat{M_1}=\widehat{FAM}\)

Xét ΔIFM và ΔIMA có: \(\widehat{AMI}\) chung; \(\widehat{M_1}=\widehat{FAM}\) (cmt)

=> ΔIFM ~ ΔIMA (g.g) => \(\dfrac{IF}{IM}=\dfrac{IM}{IA}\) => IM2 = IF.IA  (2)

Từ (1) và (2) => IB2 = IM2 => IB = IM

AH
Akai Haruma
Giáo viên
6 tháng 12 2021

Bạn cần làm gì với tổng này?

6 tháng 12 2021

Cần để rút gọn ạ ở câu trc có í nhưng giải chưa chi tiết nên e đặt lại ạ