Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3}{4}+\dfrac{9}{5}\div\dfrac{3}{2}-1=\dfrac{3}{4}+\dfrac{18}{15}-1=\dfrac{39}{20}-1=\dfrac{19}{20}\)
b) \(\dfrac{6}{7}\cdot\dfrac{8}{13}+\dfrac{6}{13}\cdot\dfrac{9}{7}-\dfrac{4}{13}\cdot\dfrac{6}{7}=\dfrac{48}{91}+\dfrac{54}{91}-\dfrac{24}{91}=\dfrac{48+51-24}{91}=\dfrac{78}{91}=\dfrac{6}{7}\)
c) \(\dfrac{-3}{7}+\left(\dfrac{3}{-7}-\dfrac{3}{-5}\right)\)\(=\dfrac{-3}{7}+\left(\dfrac{-3}{7}-\dfrac{-3}{5}\right)=\dfrac{-3}{7}+\dfrac{6}{35}=-\dfrac{9}{35}\)
1: \(100-x^2=\left(10-x\right)\left(10+x\right)\)
2: \(b^2-a^2=\left(b-a\right)\left(b+a\right)\)
3: \(\left(3y\right)^2-\left(4x\right)^2=\left(3y-4x\right)\left(3y+4x\right)\)
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
a) \(=3\left(x-3y\right)\)
b) \(=5xy\left(3x-2y\right)\)
c) \(=5y\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(5y+2\right)\)
d) \(=\left(9x^2+6x+1\right)-4y^2=\left(3x+1\right)^2-4y^2=\left(3x+1-2y\right)\left(3x+1+2y\right)\)
e) \(=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
g) \(=x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(x-1\right)\)
a) \(3x-9y\)
\(=3\left(x-3y\right)\)
b) \(15x^2y-10xy^2\)
\(=5xy\left(3x-2y\right)\)
c) \(5xy+10y^2+2x+4y\)
\(=\left(x+2y\right)\left(5y+2\right)\)
d) \(9x^2-4x^2+6x+1\)
\(=\left(3x+1-2y\right)\left(3x+1+2y\right)\)
e) \(x^2+4x+3\)
\(=\left(x+1\right)\left(x+3\right)\)
d) \(x^2-3x+2\)
\(=\left(x-1\right)\left(x-2\right)\)
a) \(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=ab\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=ab\)
\(\Leftrightarrow\dfrac{4ab}{4}=ab\left(đúng\right)\)
b) \(2\left(x^2+y^2\right)=\left(x+y\right)^2+\left(x-y\right)^2\)
\(\Leftrightarrow2x^2+2y^2=x^2+2xy+y^2+x^2-2xy+y^2\)
\(\Leftrightarrow2x^2+2y^2=2x^2+2y^2\left(đúng\right)\)
c) \(\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)=2y\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x+y-x+y\right)=2y\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right).2y=2y\left(x+y\right)\left(đúng\right)\)
a) Ta có: \(\widehat{B}+\widehat{C}=140^0+40^0=180^0\)
Mà 2 góc này là 2 góc trong cùng phía
=> AB//CD
=> ABCD là hthang
b) Ta có:
\(\left\{{}\begin{matrix}\widehat{A}+\widehat{D}=180^0\\\widehat{A}-\widehat{D}=110^0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(180^0+110^0\right):2=145^0\\\widehat{D}=\left(180^0-110^0\right):2=35^0\end{matrix}\right.\)
a.3x2-3xy-2x+2y =(3x2-3xy)-(2x-2y)
=3x.(x-y)-2.(x-y)
=(x-y).(3x-2)
b.6x2+3xy-2ax-ay =(6x2-2ax)+(3xy-ay)
=2x.(3x-a)+y.(3x-a)
=(3x-a).(2x+y)
c.x3-6x2+9x=x.(x2-6x+9)
=x.(x-3)2
d.2xy-x2-y2+25= -(-2xy+x2+y2-25)
= -[(x2-2xy+y2)-52)]
= -[(x-y)2-52 ]
= -(x-y+5).(x-y-5)
e.x2-y2-4yz-4z2= -(-x2+y2+4yz+4z2)
= -[(y2+4yz+4z2)-x2 ]
= -[ (y+2z)2-x2 ]
= -(y+2z+x).(y+2z-x)
f.2a2-4ab+2b2-8c2=2a2-2ab-2ab+2b2-4c2-4c2
=2.(a2-ab-ab+b2-2c2-2c2
=2.(a2-2ab+b2-4c2)
=2.[(a-b)2-(2c)2 ]
=2.(a-b+2c).(a-b-2c)
Mong là đúng
\(a,A=\left(5x-1+1-x\right)^2=16x^2\\ B=x^3-x^3+4x=4x\\ c,A=B\Leftrightarrow16x^2-4x=0\\ \Leftrightarrow4x\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)