K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

loading...  ai giải giúp mình với

NV
12 tháng 7 2021

12.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)

\(\Rightarrow M=\sqrt{2}\)

13.

Pt có nghiệm khi:

\(5^2+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow2m\le24\)

\(\Rightarrow m\le12\)

NV
12 tháng 7 2021

14.

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=k2\pi\)

15.

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

Đáp án A

16.

\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)

Có \(1008+1008=2016\) nghiệm

16 tháng 12 2021

\(4^x+4^{x+1}=320\\ \Rightarrow4^x+4^x.4=320\\ \Rightarrow5.4^{x+1}=320\\ \Rightarrow4^x=64\\ \Rightarrow4^x=4^3\\ \Rightarrow x=3\)

16 tháng 12 2021

⇔4x(1+4)=320

⇔4x.5=320

⇔4x=64

⇔4x=43

⇒x=3

9 tháng 4 2022

a. Ta có : \(SA\perp\left(ABCD\right)\Rightarrow BC\perp SA\)

Đáy ABCD là HV \(\Rightarrow BC\perp AB\) 

Suy ra : \(BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)  ( đpcm ) 

b. \(\left(SBD\right)\cap\left(ABCD\right)=BD\)

O = \(AC\cap BD\)  ; ta có : \(AO\perp BD;AO=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{2}a\)

Dễ dàng c/m : \(BD\perp\left(SAC\right)\)  \(\Rightarrow SO\perp BD\)

Suy ra : \(\left(\left(SBD\right);\left(ABCD\right)\right)=\left(SO;AO\right)=\widehat{SOA}\)

\(\Delta SAO\perp\) tại A có : tan \(\widehat{SOA}=\dfrac{SA}{AO}=\dfrac{a}{\dfrac{\sqrt{2}}{2}a}=\sqrt{2}\)

\(\Rightarrow\widehat{SOA}\approx54,7^o\) \(\Rightarrow\) ...

 

NV
12 tháng 7 2021

1.

\(\Leftrightarrow1+2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=3\)

\(\Leftrightarrow sinx+\sqrt{3}cosx=2\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow x-\dfrac{\pi}{6}=k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)

2.

\(cos2x=-1\)

\(\Leftrightarrow2x=\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

NV
12 tháng 7 2021

3.

\(\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1+cosx\right)\left(1-cosx\right)\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất là \(x=\dfrac{\pi}{6}\)

4.

\(1-cos2x-1-cos6x=0\)

\(\Leftrightarrow cos6x=-cos2x=cos\left(\pi-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=\pi-2x+k2\pi\\6x=2x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Pt có 6 nghiệm trên khoảng đã cho

NV
12 tháng 7 2021

6.

\(sin3x+cos2x=1+sin3x-sinx\)

\(\Leftrightarrow cos2x=1-sinx\)

\(\Leftrightarrow1-2sin^2x=1-sinx\)

\(\Leftrightarrow2sin^2x-sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

7.

\(\sqrt{2}sinx-2\sqrt{2}cosx=2-2sinx.cosx\)

\(\Leftrightarrow\sqrt{2}sinx\left(\sqrt{2}cosx+1\right)-2\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}sinx-2\right)\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow cosx=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow x=\pm\dfrac{3\pi}{4}+k2\pi\)

\(\left(\dfrac{3\pi}{4}\right).\left(-\dfrac{3\pi}{4}\right)=-\dfrac{9\pi^2}{16}\)

NV
12 tháng 7 2021

8.

\(2sinx.cosx+3cosx=0\)

\(\Leftrightarrow cosx\left(2sinx+3\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x=\dfrac{\pi}{2}\) có 1 nghiệm trong khoảng đã cho

9.

\(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\) 

Đáp án D

NV
21 tháng 7 2021

Điều kiện để biểu thức điều kiện có nghĩa: \(n\ge3\)

Giả thiết tương đương:

\(\dfrac{n!}{\left(n-3\right)!}+\dfrac{6.n!}{\left(n-2\right)!.2!}-4n=100\)

\(\Leftrightarrow n\left(n-1\right)\left(n-2\right)+3n\left(n-1\right)-4n-100=0\)

\(\Leftrightarrow n^3-5n-100=0\)

\(\Leftrightarrow\left(n-5\right)\left(n^2+5n+20\right)=0\)

\(\Leftrightarrow n=5\)

Do đó nhị thức có dạng: \(\left(x^2+2\right)^{15}\)

Số hạng tổng quát trong khai triển: \(C_{15}^k\left(x^2\right)^k.2^{15-k}=C_{15}^k.2^{15-k}x^{2k}\)

Số hạng chứa \(x^8\) thỏa mãn: \(2k=8\Rightarrow k=4\)

Hệ số: \(C_{15}^4.2^{11}\)

21 tháng 7 2021

Anh ơi em nhắn tin cho anh ở mục tin nhắn anh vào xem nhá 

NV
4 tháng 8 2021

\(2cosx+\sqrt{2}=0\Leftrightarrow cosx=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\pi}{4}+k2\pi\\x=-\dfrac{3\pi}{4}+n2\pi\end{matrix}\right.\)

\(-6< x< 6\Rightarrow\left\{{}\begin{matrix}-6< \dfrac{3\pi}{4}+k2\pi< 6\\-6< -\dfrac{3\pi}{4}+n2\pi< 6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-1,33< k< 0,58\\-0,58< n< 1,33\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=\left\{-1;0\right\}\\n=\left\{0;1\right\}\end{matrix}\right.\) \(\Rightarrow\) có 4 nghiệm

NV
26 tháng 3 2021

Rất đơn giản, điểm \(A\left(1;-2\right)\) có \(x=1;y=-2\)

Do đó ảnh của nó qua phép biến hình \(f\) sẽ có tọa độ: \(\left\{{}\begin{matrix}x_{A'}=-x=-1\\y_{A'}=\dfrac{y}{2}=-1\end{matrix}\right.\)

\(\Rightarrow A'\left(-1;-1\right)\)

NV
17 tháng 7 2021

Hoàn toàn không dịch được các kí hiệu mà bạn ghi 

Để ghi kí hiệu tổ hợp bạn sử dụng công cụ soạn thảo này:

undefined

Sau đó gõ chữ hoa cần ghi (ví dụ C nếu muốn tổ hợp, A nếu muốn chỉnh hợp) rồi chọn tiếp chỗ này:

undefined

Sau đó chọn:

undefined

Rồi ghi giá trị k, n vào 2 ô nhỏ trên dưới là được

 

17 tháng 7 2021

Dạ mình cập nhập hình rồi ạ