K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2021

Điều kiện để biểu thức điều kiện có nghĩa: \(n\ge3\)

Giả thiết tương đương:

\(\dfrac{n!}{\left(n-3\right)!}+\dfrac{6.n!}{\left(n-2\right)!.2!}-4n=100\)

\(\Leftrightarrow n\left(n-1\right)\left(n-2\right)+3n\left(n-1\right)-4n-100=0\)

\(\Leftrightarrow n^3-5n-100=0\)

\(\Leftrightarrow\left(n-5\right)\left(n^2+5n+20\right)=0\)

\(\Leftrightarrow n=5\)

Do đó nhị thức có dạng: \(\left(x^2+2\right)^{15}\)

Số hạng tổng quát trong khai triển: \(C_{15}^k\left(x^2\right)^k.2^{15-k}=C_{15}^k.2^{15-k}x^{2k}\)

Số hạng chứa \(x^8\) thỏa mãn: \(2k=8\Rightarrow k=4\)

Hệ số: \(C_{15}^4.2^{11}\)

21 tháng 7 2021

Anh ơi em nhắn tin cho anh ở mục tin nhắn anh vào xem nhá 

29 tháng 10 2023

loading...  ai giải giúp mình với

NV
12 tháng 7 2021

12.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)

\(\Rightarrow M=\sqrt{2}\)

13.

Pt có nghiệm khi:

\(5^2+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow2m\le24\)

\(\Rightarrow m\le12\)

NV
12 tháng 7 2021

14.

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=k2\pi\)

15.

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

Đáp án A

16.

\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)

Có \(1008+1008=2016\) nghiệm

16 tháng 12 2021

\(4^x+4^{x+1}=320\\ \Rightarrow4^x+4^x.4=320\\ \Rightarrow5.4^{x+1}=320\\ \Rightarrow4^x=64\\ \Rightarrow4^x=4^3\\ \Rightarrow x=3\)

16 tháng 12 2021

⇔4x(1+4)=320

⇔4x.5=320

⇔4x=64

⇔4x=43

⇒x=3

9 tháng 4 2022

a. Ta có : \(SA\perp\left(ABCD\right)\Rightarrow BC\perp SA\)

Đáy ABCD là HV \(\Rightarrow BC\perp AB\) 

Suy ra : \(BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)  ( đpcm ) 

b. \(\left(SBD\right)\cap\left(ABCD\right)=BD\)

O = \(AC\cap BD\)  ; ta có : \(AO\perp BD;AO=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{2}a\)

Dễ dàng c/m : \(BD\perp\left(SAC\right)\)  \(\Rightarrow SO\perp BD\)

Suy ra : \(\left(\left(SBD\right);\left(ABCD\right)\right)=\left(SO;AO\right)=\widehat{SOA}\)

\(\Delta SAO\perp\) tại A có : tan \(\widehat{SOA}=\dfrac{SA}{AO}=\dfrac{a}{\dfrac{\sqrt{2}}{2}a}=\sqrt{2}\)

\(\Rightarrow\widehat{SOA}\approx54,7^o\) \(\Rightarrow\) ...

 

NV
12 tháng 7 2021

1.

\(\Leftrightarrow1+2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=3\)

\(\Leftrightarrow sinx+\sqrt{3}cosx=2\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow x-\dfrac{\pi}{6}=k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)

2.

\(cos2x=-1\)

\(\Leftrightarrow2x=\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

NV
12 tháng 7 2021

3.

\(\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1+cosx\right)\left(1-cosx\right)\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất là \(x=\dfrac{\pi}{6}\)

4.

\(1-cos2x-1-cos6x=0\)

\(\Leftrightarrow cos6x=-cos2x=cos\left(\pi-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=\pi-2x+k2\pi\\6x=2x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Pt có 6 nghiệm trên khoảng đã cho

NV
12 tháng 7 2021

6.

\(sin3x+cos2x=1+sin3x-sinx\)

\(\Leftrightarrow cos2x=1-sinx\)

\(\Leftrightarrow1-2sin^2x=1-sinx\)

\(\Leftrightarrow2sin^2x-sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

7.

\(\sqrt{2}sinx-2\sqrt{2}cosx=2-2sinx.cosx\)

\(\Leftrightarrow\sqrt{2}sinx\left(\sqrt{2}cosx+1\right)-2\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}sinx-2\right)\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow cosx=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow x=\pm\dfrac{3\pi}{4}+k2\pi\)

\(\left(\dfrac{3\pi}{4}\right).\left(-\dfrac{3\pi}{4}\right)=-\dfrac{9\pi^2}{16}\)

NV
12 tháng 7 2021

8.

\(2sinx.cosx+3cosx=0\)

\(\Leftrightarrow cosx\left(2sinx+3\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x=\dfrac{\pi}{2}\) có 1 nghiệm trong khoảng đã cho

9.

\(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\) 

Đáp án D

NV
4 tháng 8 2021

\(2cosx+\sqrt{2}=0\Leftrightarrow cosx=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\pi}{4}+k2\pi\\x=-\dfrac{3\pi}{4}+n2\pi\end{matrix}\right.\)

\(-6< x< 6\Rightarrow\left\{{}\begin{matrix}-6< \dfrac{3\pi}{4}+k2\pi< 6\\-6< -\dfrac{3\pi}{4}+n2\pi< 6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-1,33< k< 0,58\\-0,58< n< 1,33\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=\left\{-1;0\right\}\\n=\left\{0;1\right\}\end{matrix}\right.\) \(\Rightarrow\) có 4 nghiệm

NV
26 tháng 3 2021

Rất đơn giản, điểm \(A\left(1;-2\right)\) có \(x=1;y=-2\)

Do đó ảnh của nó qua phép biến hình \(f\) sẽ có tọa độ: \(\left\{{}\begin{matrix}x_{A'}=-x=-1\\y_{A'}=\dfrac{y}{2}=-1\end{matrix}\right.\)

\(\Rightarrow A'\left(-1;-1\right)\)

NV
17 tháng 7 2021

Hoàn toàn không dịch được các kí hiệu mà bạn ghi 

Để ghi kí hiệu tổ hợp bạn sử dụng công cụ soạn thảo này:

undefined

Sau đó gõ chữ hoa cần ghi (ví dụ C nếu muốn tổ hợp, A nếu muốn chỉnh hợp) rồi chọn tiếp chỗ này:

undefined

Sau đó chọn:

undefined

Rồi ghi giá trị k, n vào 2 ô nhỏ trên dưới là được

 

17 tháng 7 2021

Dạ mình cập nhập hình rồi ạ