K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

câu a là tìm a và b ak

21 tháng 4 2020

b) Ta có : 5c - 1 < - 4b  \(\Rightarrow\)5c -1 + 3 < - 4b + 3  \(\Rightarrow\)5c + 2 < 3 - 4b

Mà 5c + 2 > 3 - 4a  \(\Rightarrow\)3 - 4a < 5c + 2 < 3 - 4b  \(\Rightarrow\)3 - 4a < 3 - 4b  \(\Rightarrow\)4a < 4b  \(\Rightarrow\)a < b

Vậy nếu 3 - 4a < 5c + 2 và 5c - 1 < - 4b thì a < b .

24 tháng 4 2019

a) Ta có: a>b => 2a > 2b  (nhân 2 vế với 2)

                     => 2a - 3 > 2b - 3 (cộng 2 vế với -3)

b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)

                                       => a > b (nhân 2 vế với -1/4)

c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)

                                  => -4a < 5c-1

Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)

12 tháng 4 2019

3-4a < 5c+2

=>-4a < 5c-1 (chuyển vế)

mà 5c-1 < -4b

nên -4a<-4b

vậy a>b

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

9 tháng 8 2023

Ta đặt \(a^2+4b+3=k^2\) 

\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)

Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)

Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)

\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)

\(\Leftrightarrow c^2+c+1+b=l^2\)

Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.

Nếu \(c< b< 2c+1\) thì

\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.

Do vậy, \(c=b\) hay \(a=2b+1\)

Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.

 

4 tháng 8 2015

tính đc x^2-y^2-z^2=a^2-^b^2-c^2
mà a^2=b^2+c^2
suy ra x^2-y^2-z^2=0
suy ra x^2=y^2+z^2
vậy x;y;z là đọ dài của tam giác vuông
---------------------------------------------------------------------
li-ke cho mình nhé bnQuynh Anh Quach
 

15 tháng 7 2016

1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)

2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)

3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3

5 tháng 4 2023

a)

`a-10>b-10`

`<=>a-10+10>b-10+10`

`<=>a>b`

c)

`-a-9≥-b-9`

`<=>-a-9+9≥-b-9+9`

`<=>-a≥-b`

`<=>-a*(-1)/1≤-b*(-1)/1`

`<=>a≤b`

e)

`-4a+9< -4b+9`

`<=>-4a+9-9< -4b+9-9`

`<=>-4a< -4b`

`<=>-4a*(-1)/4> -4b*(-1)/4`

`<=>a>b`

b)

`25+a>25+b`

`<=>25+a-25>25+b-25`

`<=>a>b`

f)

cái giữa là dấu gì vậy ạ

\(a,a-10>b-10\)

\(\Rightarrow a-10+10>b-10+10\)

\(\Leftrightarrow a>b\)

\(b,-a-9\ge-b-9\)

\(\Rightarrow-a-9+9\ge-b-9+9\)

\(\Leftrightarrow-a\ge-b\)

\(c,-4a+9< -4b+9\)

\(\Rightarrow-4a+9-9< -4b+9-9\)

\(\Leftrightarrow a< b\)

\(d,25+a>25+b\)

\(\Rightarrow25+a-25>25+b-25\)

\(\Leftrightarrow a>b\)

Câu cuối thiếu dấu bạn ơi!

a)   \(a>b\Rightarrow3a>3b\Rightarrow-3a<-3b\)

b) \(m-5>m-7\)

c)  Gọi phân số cần tìm là  \(\frac{a}{a+3}\)

Ta có     \(\frac{a+2}{a+5}=\frac{1}{2}\Rightarrow2a+4=a+5\Rightarrow2a-a=5-4\Rightarrow a=1\)

Vậy phân số cần tìm là   \(\frac{1}{4}\)