Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pytago=>\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(=>\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=0,8=\cos C\)
\(=>\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0,6=\sin C\)
\(=>\tan B=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}=\cot B\)
\(=>\cot B=\dfrac{AB}{AC}=\dfrac{3}{4}=\tan C\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(\Rightarrow sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)
\(cotB=\dfrac{AB}{AC}=\dfrac{3}{4}\)
Do tam giác ABC vuông tại A \(\Rightarrow C=90^0-B\)
\(\Rightarrow sinC=sin\left(90^0-B\right)=cosB=\dfrac{3}{5}\)
\(cosC=cos\left(90^0-B\right)=sinB=\dfrac{4}{5}\)
\(tanC=tan\left(90^0-B\right)=cotB=\dfrac{3}{4}\)
\(\tan B=\sqrt{2}\Leftrightarrow\dfrac{\sin B}{\cos B}=\sqrt{2}\Leftrightarrow\sin B=\sqrt{2}\cos B\\ \sin^2B+\cos^2B=1\Leftrightarrow3\cos^2B=1\\ \Leftrightarrow\cos B=\sqrt{\dfrac{1}{3}}=\dfrac{\sqrt{3}}{3}\\ \Leftrightarrow\sin B=\dfrac{\sqrt{6}}{3}\\ \Leftrightarrow\left\{{}\begin{matrix}\sin C=\cos B=\dfrac{\sqrt{3}}{3}\\\cos C=\sin B=\dfrac{\sqrt{6}}{3}\end{matrix}\right.\\ \cot C=\tan B=\sqrt{3};\tan C=\dfrac{1}{\cot C}=\dfrac{\sqrt{3}}{3}\)
A B C
Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=10\)
\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\) \(\Rightarrow\)\(cosC=\frac{4}{5}\)
\(cosB=\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\) \(\Rightarrow\) \(sinC=\frac{3}{5}\)
\(tanB=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}\) \(\Rightarrow\)\(cotC=\frac{4}{3}\)
\(cotB=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\) \(\Rightarrow\)\(tanC=\frac{3}{4}\)
Cảm ơn nhiều nhé ^^ . mình rất ngu toán . Được bạn giúp thật tốt quá
\(BC^2=AB^2+AC^2=36+64=100=10^2\)
\(\Rightarrow BC=10\left(cm\right)\)
\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)
\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)
\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)