Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(MN\perp AC\Rightarrow\) Tam giác AHC vuông tại H ; Tam giác AHB vuông tại H
Do \(\widehat{A_1}=\widehat{A_2}\) , \(\widehat{AHC}=\widehat{AHB}\left(=90^o\right)\)
Suy ra được 2 góc còn lại của 2 tam giác bằng nhau
\(a,\) Xét \(\Delta AHC\) và \(\Delta AHB:\)
Có 3 góc trong tam giác đều bằng nhau \(\Rightarrow\Delta AHC=\Delta AHB\left(g-g-g\right)\)
\(b,\) \(\widehat{A_1}=\widehat{A_2}\Rightarrow\) A là đường phân giác của tam giác ABC\(\Rightarrow HC=HB\)
Xét \(\Delta HNC\) và \(\Delta HMB:\)
Có 2 góc bằng nhau \(\widehat{M}=\widehat{N}\left(=90^o\right);\widehat{C}=\widehat{B}\left(cmt\right)\)
Và \(HC=HB\left(cmt\right)\)
\(\Rightarrow\Delta HNC=\Delta HMB\left(g-c-g\right)\)
Ta có
3344=(3.11)44=344.1144=(34)11.1144=8111.1144
4433=(4.11)33=433.1133=(43)11.1133=6411.1133
=> 3344>4433
KL:
b) 52222=(52)1111=251111
25555=(25)1111=321111
=> 52222<25555
KL
Bài 4:
a: \(C=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)x^3-2x^2-\left(4+1\right)x+1\)
\(=\dfrac{-1}{6}x^3-2x^2-5x+1\)
b: Thay x=2 vào C, ta được:
\(C=\dfrac{-1}{6}\cdot8-2\cdot4-5\cdot2+1=\dfrac{-4}{3}-8-10+1=\dfrac{-4}{3}-17=\dfrac{-4-51}{3}=-\dfrac{55}{3}\)
Bài 5:
Theo đề, ta có: \(\left(xyz\right)^2=2\cdot6\cdot3=36\)
Trường hợp 1: xyz=6
\(\Leftrightarrow\left\{{}\begin{matrix}z=3\\x=1\\y=2\end{matrix}\right.\)
Trường hợp 2: xyz=-6
\(\Leftrightarrow\left\{{}\begin{matrix}z=-3\\x=-1\\y=-2\end{matrix}\right.\)
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12
Đề trước đó:
(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x
<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x
<=>x^2-11x-6=0
<=>x^2-2x. 11/2 + 121/4-145/4=0
<=>(x-11/2)^2=145/4
<=>|x-11/2|=căn(145)/2
<=>x=[11+-căn(145)]/2
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
Kẻ Az//xx'(Az cùng phía Cx' trên nửa mp bờ AC)
\(\Rightarrow\)Az//yy'
\(\Rightarrow\widehat{CAz}=\widehat{ACx}=45^0\) (so le trong)\(;\widehat{zAD}=180^0-\widehat{ADy'}=72^0\)(trong cùng phía)
\(\Rightarrow\widehat{CAD}=\widehat{CAz}+\widehat{zAD}=117^0\)