K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

Câu 2.2 

để 2 đt song song khi \(\left\{{}\begin{matrix}m^2-1=3\\m+1\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\Leftrightarrow m=2\)

Câu 2: 

1: \(A=\left(\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-y\right)\cdot\left(\sqrt{y}-2\right)\)

\(=\left(2\sqrt{y}-y\right)\left(\sqrt{y}-2\right)=-\sqrt{y}\left(y-4\sqrt{y}+4\right)=-y\sqrt{y}+4y-4\sqrt{y}\)

1 tháng 7 2017

chắc đề sai đó bn

mà mấy bài này bạn chứng minh bằng quy nạp là ra

Uầy đề sai đâu ta

\(A=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bđt AM-GM ta có

\(A\le\frac{y}{x+y}+\frac{z}{x+z}+\frac{x}{x+y}+\frac{y}{y+z}+\frac{x}{x+z}+\frac{y}{y+z}=3\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{2020}{3}}\)

12 tháng 3 2020

Cứ tưởng áp dụng Cô si cho 2 tổng ở mẫu thôi :) quên là còn áp dụng như này :) nhưng bạn còn sai 1 chỗ nhé 

\(\sqrt{a.b}\le\frac{a}{2}+\frac{b}{2}.\) MaxA =3/2 :v

20 tháng 8 2017

\(\sqrt{9+2\sqrt{8}}\)thì được

20 tháng 8 2017

\(\sqrt{9+8\sqrt{2}}\)

\(=\sqrt{9+2\sqrt{8}}\)

=\(\sqrt{8+2\sqrt{8}+1}\)

\(=\sqrt{\left(\sqrt{8}+1\right)^2}\)

\(=\sqrt{8}+1\)

4:

a: =>|x-3|=4

=>x-3=4 hoặc x-3=-4

=>x=-1 hoặc x=7

b: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>2*căn x-5=4

=>căn x-5=2

=>x-5=4

=>x=9

16 tháng 5 2023

Dạ em cảm ơn

8 tháng 12 2023

loading...  loading...  

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}< >-\dfrac{1}{m}\)

=>\(m^2\ne-3\)(luôn đúng)

Ta có: \(\left\{{}\begin{matrix}mx-y=2\\3x+my=3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\left(mx-2\right)=3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m^2x-2m=3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m}{m^2+3}\\y=m\cdot\dfrac{5m}{m^2+3}-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5m}{m^2+3}\\y=\dfrac{5m^2-2m^2-6}{m^2+3}=\dfrac{3m^2-6}{m^2+3}\end{matrix}\right.\)

\(\left(x+y\right)\cdot\left(m^2+3\right)+8=0\)

=>\(\dfrac{5m+3m^2-6}{m^2+3}\cdot\left(m^2+3\right)+8=0\)

=>\(3m^2+5m-6+8=0\)

=>\(3m^2+5m+2=0\)

=>(m+1)(3m+2)=0

=>\(\left[{}\begin{matrix}m=-1\\m=-\dfrac{2}{3}\end{matrix}\right.\)